matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungNormalverteilung Geburten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Wahrscheinlichkeitsrechnung" - Normalverteilung Geburten
Normalverteilung Geburten < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalverteilung Geburten: Berechnung µ und sigma
Status: (Frage) beantwortet Status 
Datum: 18:43 Do 19.12.2013
Autor: MathematikLosser

Das Geburtsgewicht von Knaben ist annähernd normalverteilt, 5% wiegen weniger als 2600 g, 5% mehr als 4100 g.
a) Berechne Erwartungswert und Standardabweichung.

Versuch:
P(0,95x<4100) laut Tabelle ca. 1,645 beim anderen Gegenwahrscheinlichkeit
=> 1,645*(sigma)=4100-µ
-1,645=2600-µ
3,29*(sigma)=1500
sigma=455,9270517g
1,645=(4100-µ)/455,93
M=3349,99515 (gerundet 3350g)
stimmen meine Werte?

        
Bezug
Normalverteilung Geburten: Antwort
Status: (Antwort) fertig Status 
Datum: 18:58 Do 19.12.2013
Autor: abakus


> Das Geburtsgewicht von Knaben ist annähernd
> normalverteilt, 5% wiegen weniger als 2600 g, 5% mehr als
> 4100 g.
> a) Berechne Erwartungswert und Standardabweichung.

>

> Versuch:
> P(0,95x<4100) laut Tabelle ca. 1,645 beim anderen
> Gegenwahrscheinlichkeit
> => 1,645*(sigma)=4100-µ
> -1,645=2600-µ
> 3,29*(sigma)=1500
> sigma=455,9270517g
> 1,645=(4100-µ)/455,93
> M=3349,99515 (gerundet 3350g)
> stimmen meine Werte?

Hallo,
[mm] $\mu$ [/mm] muss aus Symmetriegründen genau in der Mitte zwischen deiner 5%-Grenze und der 95%-Grenze liegen, und die Mitte zwischen 2600 und 4100 ist 3350. Die 95%-Grenze wird laut Tabelle der Standardnormalverteilung bei 1,645 erreicht, also muss 4100 dem Wert von [mm] $\mu+1,645\sigma$ [/mm] bzw.  [mm] $3350+1,645\sigma$  [/mm] entsprechen, also ist $750= [mm] 1,645\sigma$, [/mm] und damit stimmt auch dein Ergebnis für [mm] $\sigma$. [/mm]
Gruß Abakus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]