matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraNormen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Normen
Normen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normen: Beweis einer Eigenschaft
Status: (Frage) beantwortet Status 
Datum: 22:34 So 08.01.2006
Autor: Karl_Pech

Hallo Allerseits!


Eine Norm ist ja folgendermaßen definiert:


[mm]\left|\left|\cdot{}\right|\right|: \mathbb{R}^n \to \mathbb{R}[/mm] heißt Norm auf [mm]\mathbb{R}^n[/mm], wenn folgende Eigenschaften erfüllt sind:


[mm](1)\;\left|\left|x\right|\right| = 0 \gdw x = 0[/mm]

[mm](2)\;\left|\left|\alpha x\right|\right| = \left|\alpha\right|\left|\left|x\right|\right|\quad\forall x \in \mathbb{R}^n\quad\forall\alpha \in \mathbb{R}[/mm]

[mm](3)\;\left|\left|x+y\right|\right| \leqslant \left|\left|x\right|\right| + \left|\left|y\right|\right|\quad\forall x,y \in \mathbb{R}^n[/mm]


Wie zeige ich nun alleine aus diesen drei Eigenschaften folgernd, daß


[mm]\left|\left|x\right|\right| > 0\quad\forall x \ne 0[/mm]?



Was einem ja sofort einfällt ist Folgendes:


[mm]\left|\left|x\right|\right| = \left|\left|\sum_{i=1}^n{\alpha_ie_i}\right|\right|[/mm].


Ich stelle [mm]x[/mm] also als eine Linearkombination aus der Einheitsbasis von [mm]\mathbb{R}^n[/mm] dar.


Durch [mm]n-1\texttt{--malige}[/mm] Anwendung von Regel (3) und anschließender Anwendung von (2) erhalten wir:


[mm]\left|\left|x\right|\right| \leqslant \sum_{i=1}^n{\left|\alpha_i\right|\left|\left|e_i\right|\right|}[/mm]


Aber ich fürchte, daß ich hier generell anders hätte anfangen sollen, richtig? Im Moment fällt mir aber kein völlig anderer Ansatz ein...


Wäre schön, wenn man mir helfen könnte. ;-)



Liebe Grüße
Karl
[user]




        
Bezug
Normen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:41 So 08.01.2006
Autor: Stefan

Lieber Karl!

Wegen (1) müsste es andernfalls ein $x [mm] \ne [/mm] 0$ mit [mm] $\Vert [/mm] x [mm] \Vert [/mm] <0$ geben. Dann wäre nach (2) auch [mm] $\Vert [/mm] -x [mm] \Vert [/mm] = |-1| [mm] \cdot \Vert [/mm] x [mm] \Vert [/mm] = [mm] \Vert [/mm] x [mm] \Vert [/mm] <0$ und daher nach (1) und (3):

$0 = [mm] \Vert [/mm] 0 [mm] \Vert [/mm] = [mm] \Vert [/mm] x + [mm] (-x)\Vert \le \Vert [/mm] x [mm] \Vert [/mm] + [mm] \Vert [/mm] -x [mm] \Vert [/mm] <0$,

Widerspruch.

Liebe Grüße
Stefan

Bezug
                
Bezug
Normen: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:16 So 08.01.2006
Autor: Karl_Pech

Lieber Stefan!


> [mm]0 < 0[/mm] ;-)


Danke für deine Hilfe! Auf einen Widerspruchsbeweis bin ich gar nicht gekommen. Ich versuch's immer direkt. [peinlich] Aber zumindest habe ich den Beweis verstanden. Vor nicht allzu langer Zeit wäre dem nicht so gewesen...


Der Schlüssel zum Widerspruch ist also der Betrag: [mm]\left|-1 \right| = 1[/mm]. Ein einfaches aber zugleich "schlagkräftiges" Argument...



Liebe Grüße
Karl
[user]




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]