matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenNullfolge Beweis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Nullfolge Beweis
Nullfolge Beweis < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullfolge Beweis: Hilfestellung
Status: (Frage) beantwortet Status 
Datum: 23:25 Mi 11.11.2009
Autor: Mathegirl

Aufgabe
Es sei [mm] (x_n) [/mm] eine Folge mit [mm] x_n>0 [/mm] für alle [mm] n\in \IN. [/mm] Zeige, dass [mm] (\bruch{1}{x_n}) [/mm] genau dann eine Nullfolge ist, wenn es zu jeden K>0 ein [mm] n_0\in \IN [/mm] gibt mit [mm] x_n>K [/mm] für alle [mm] n\ge n_o. [/mm]

Muss ich jetzt hier einen Beweis für eine Nullfolge vornehmen oder wie funktioniert das? Ich weiß nicht so recht wie man sowas beweist. Mit Beweisen tue ich mich sowieso recht schwer.. :(

und was ist hierbei K?


Mathegirl

        
Bezug
Nullfolge Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 23:38 Mi 11.11.2009
Autor: Teufel

Hi!

Nein, aber du musst wissen, was es auf [mm] "\varepsilon-Ebene" [/mm] bedeutet, wenn [mm] a_n [/mm] eine Nullfolge ist.

Wenn denn [mm] a_n [/mm] Nullfolge ist, heißt das: Es existiert ein [mm] n_0 [/mm] mit [mm] $|a_n|<\varepsilon$ $\forall n>n_0$. [/mm]

Nun ist [mm] a_n=\bruch{1}{x_n} [/mm] in deinem Fall.

Also: Es existiert ein [mm] n_0 [/mm] mit [mm] $|\bruch{1}{x_n}|=\bruch{1}{x_n}<\varepsilon$ $\forall n>n_0$. [/mm]
Daraus sollst du unter anderem schließen, dass dann [mm] x_n>K [/mm] ist, wobei du das K selber bestimmen musst.

Mein Tipp: Stelle [mm] \bruch{1}{x_n} <\varepsilon [/mm] mal nach [mm] x_n [/mm] um und schau, was du für ein K nehmen könntest.

[anon] Teufel

Bezug
                
Bezug
Nullfolge Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:05 Do 12.11.2009
Autor: Mathegirl


  
Also: Es existiert ein [mm]n_0[/mm] mit
[mm]|\bruch{1}{x_n}|=\bruch{1}{x_n}<\varepsilon[/mm]  [mm]\forall n>n_0[/mm].

[mm] \bruch{1}{x_n}<\varepsilon [/mm]
[mm] \bruch{1}{\varepsilon}< x_n [/mm]
[mm] \bruch{1}{x_n}< \bruch{1}{x_0}< \varepsilon [/mm]

Bezug
                        
Bezug
Nullfolge Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 00:14 Do 12.11.2009
Autor: Teufel


>
>
> Also: Es existiert ein [mm]n_0[/mm] mit
> [mm]|\bruch{1}{x_n}|=\bruch{1}{x_n}<\varepsilon[/mm]  [mm]\forall n>n_0[/mm].
>  
> [mm]\bruch{1}{x_n}<\varepsilon[/mm]
>  [mm]\bruch{1}{\varepsilon}< x_n[/mm]

Bis hierhin!
Nun kannst du [mm] K:=\bruch{1}{\varepsilon} [/mm] setzen!

Und den Beweis dann schön aufgeschrieben:

[mm] \exists n_0 \in \IN: \bruch{1}{x_n}<\varepsilon \forall n>n_0 \gdw \exists n_0 \in \IN: K:=\bruch{1}{\varepsilon}n_0 [/mm]

Damit hast du gleich beide Richtungen gezeigt, die du zeigen solltest.
[mm] \bruch{1}{x_n} [/mm] Nullfolge [mm] \Rightarrow x_n>K [/mm]
und
[mm] x_n>K \Rightarrow \bruch{1}{x_n} [/mm] Nullfolge.

Da du ja zwischendurch auch nur Äquivalenzumformungen verwendet hast.

[anon] Teufel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]