matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisNullstellen+Funktionsterm best
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Schul-Analysis" - Nullstellen+Funktionsterm best
Nullstellen+Funktionsterm best < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellen+Funktionsterm best: Frage !!!
Status: (Frage) beantwortet Status 
Datum: 13:43 So 05.06.2005
Autor: steph

Hallo,

hätte folgende dringende Frage,

1. ich habe die FUnktion f(x)= [mm] -1/36x^4+x^2 [/mm]

Die Funktion läuft doch normerlweise von UNTEN nach UNTEN oder ???

2. Die Parabel G mit der Gleichung P(x)= [mm] ax^2+bx+c [/mm] (a,b,c = alle Zahlen aber a [mm] \not [/mm] 0) schneidet G(f) im Punkt A (6/y). Aaußerdem verläuft sie durch den PUnkt B 2/8. Berechnen Sie b und c in Abh. von a.

Ich habe wirklich keine Ahnung!! Mit einem Gleichungssystem habe ich es schon probiert, aber ich komm nur auf falsche Lösungen...

3. Bestimmen Sie nun a noch so, dass die Parabel auch durch den Punkt C (3/y) des GFraphen Gf verläuft.

Eigentlich wollte ich den Punkt einsetzen, aber das geht ja nicht, weil ich die vorige Gleichung nicht habe....

Würde mich freuen, wenn mir jemand helfen könnte !!!

BESTEN DANK !!

gruss
steph



        
Bezug
Nullstellen+Funktionsterm best: Hilfe
Status: (Antwort) fertig Status 
Datum: 14:05 So 05.06.2005
Autor: Zwerglein

Hi, steph,

> 1. ich habe die FUnktion f(x)= [mm]-1/36x^4+x^2[/mm]
>
> Die Funktion läuft doch normerlweise von UNTEN nach UNTEN
> oder ???

Richtig!
Aber laut Überschrift sollst Du vermutlich die Nullstellen bestimmen, stimmt's?
Nun: [mm] -\bruch{1}{36}x^{2} [/mm] ausklammern. Dann siehst Du: eine doppelte Nullstellen und zwei einfache!

>  
> 2. Die Parabel G mit der Gleichung P(x)= [mm]ax^2+bx+c[/mm] (a,b,c =
> alle Zahlen aber a [mm]\not[/mm] 0) schneidet G(f) im Punkt A (6/y).
> Aaußerdem verläuft sie durch den PUnkt B 2/8. Berechnen Sie
> b und c in Abh. von a.
>

1. Bedingung: Der Punkt A ist Schnittpunkt der Graphen. Daher liegt er speziell auf dem Graphen von f. Folglich kannst Du seine y-Koordinate ausrechnen: f(6) = ?  (Ergebnis übrigens: 0)
Daher: (I) 36a + 6b + c = 0.

2. Bedingung: B(2/8).
Daher: (II) 4a + 2b + c = 8

Erste Lösungsschritte: Bilde die Differenz (I) - (II). Dadurch fällt c weg und Du hast eine Gleichung mit nur noch a und b. Die löst Du nach b auf; das ist dann bereits das gewünschte Ergebnis für b.
Das setzt Du dann z.B. in (II) ein und löst nach c auf.
Beide Ergebniss, also für b und c, hängen wohl von a ab. Aber das soll ja so sein! Drum jetzt nur noch in die Ausgangsgleichung g(x) einsetzen und Du hast den Funktionsterm gefunden!
(Ohne Gewähr: g(x) = [mm] ax^{2} [/mm] -(8a+2)x + (12a+12).)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]