matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungNullstellenberechnung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integralrechnung" - Nullstellenberechnung
Nullstellenberechnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellenberechnung: Tipp
Status: (Frage) beantwortet Status 
Datum: 22:31 Sa 24.09.2011
Autor: Anopheles

Aufgabe
Berechne die Nullstellen von dieser Funktion:

[mm] f(x)=\bruch{1}{3}x^3-x^2-x+3 [/mm]

Das ist bei mir Teil der Integralberechnung, weil ich die Integralgrenzen brauche.. wenn ich jetzt allerdings diese Funktion gleich 0 setze und einbischen rechne, komme ich immer auf falsche Ergebnisse..

Kann mir bitte jemand einpaar Schritte vorwärts rechnen, wie ich diese Aufgabe am schnellsten und elegantesten löse ?

        
Bezug
Nullstellenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:38 Sa 24.09.2011
Autor: M.Rex

Hallo

> Berechne die Nullstellen von dieser Funktion:
>  
> [mm]f(x)=\bruch{1}{3}x^3-x^2-x+3[/mm]
>  Das ist bei mir Teil der Integralberechnung, weil ich die
> Integralgrenzen brauche.. wenn ich jetzt allerdings diese
> Funktion gleich 0 setze und einbischen rechne, komme ich
> immer auf falsche Ergebnisse..
>  
> Kann mir bitte jemand einpaar Schritte vorwärts rechnen,
> wie ich diese Aufgabe am schnellsten und elegantesten löse
> ?

Faktorisiere den Term mit der Polynomdivision zu:

[mm] f(x)=\frac{1}{3}(x-3)(x^{2}-3) [/mm]

Daraus lassen sich die drei Nullstellen hervorragend ermitteln.

Marius


Bezug
                
Bezug
Nullstellenberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:46 Sa 24.09.2011
Autor: Anopheles

Okay.. kannst du mir sagen, wie du das gemacht hast ? Bzw. wie ich auf sowas überhaupt kommen soll ?

Ich bin zwar LK 12, aber auf sowas wäre ich jetzt niemals gekommen.. und selbst jetzt wo du es mir gesagt hast, könnte ich noch nichtmal den Schritt von 1 nach 2 durchführen.. Wäre echt dankbar, wenn du mir das erklären könntest.

Bezug
                        
Bezug
Nullstellenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:51 Sa 24.09.2011
Autor: M.Rex

Hallo

> Okay.. kannst du mir sagen, wie du das gemacht hast ? Bzw.
> wie ich auf sowas überhaupt kommen soll ?

Die Polynomdivision sollte aber gerade im LK12 bekannt sein.

>
> Ich bin zwar LK 12, aber auf sowas wäre ich jetzt niemals
> gekommen.. und selbst jetzt wo du es mir gesagt hast,
> könnte ich noch nichtmal den Schritt von 1 nach 2
> durchführen.. Wäre echt dankbar, wenn du mir das
> erklären könntest.

Klammere zuerst die [mm] \frac{1}{3} [/mm] aus.

Also:

$ [mm] f(x)=\bruch{1}{3}x^3-x^2-x+3 [/mm] $
[mm] =\frac{1}{3}\left(x^{3}-3x^{2}-3x+9\right) [/mm]



Die erste Nullstelle bei der Polynomdivision musst du leider erraten, hier die +3. (als ganzzahlige "Kandidaten" kommen nur die Teiler der 9 in Frage, also [mm] \pm1, \pm3 [/mm] und [mm] \pm9 [/mm] )

Also mache die Polynomdivision

[mm] \left(x^{3}-3x^{2}-3x+9\right):(x-3)=(x^{2}-3) [/mm]

Somit gilt:

[mm] \frac{1}{3}\left(x^{3}-3x^{2}-3x+9\right)=\frac{1}{3}(x-3)\left(x^{2}-3\right) [/mm]

Marius


Bezug
        
Bezug
Nullstellenberechnung: Erklärung Polynomdivision
Status: (Antwort) fertig Status 
Datum: 22:56 Sa 24.09.2011
Autor: M.Rex

Hallo

Die Polynomdivision wird bei []strobl-f.de und bei []poenitz-net.de gut erklärt.

Marius


Bezug
                
Bezug
Nullstellenberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:13 Sa 24.09.2011
Autor: Anopheles

Klar ist mir die Polynomdivision geläufig.. nur in diesem Zusammenhang haben wir sie definitiv noch nicht durchgeführt, bzw. wenn dann ist das schon zu lange her.

Ich verstehe aber definitiv nicht, wieso man das einfach so machen darf.. Ich wäre jetzt nämlich davon ausgegangen, dass dadurch die ganze Funktion verändert wird..

Bezug
                        
Bezug
Nullstellenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:18 Sa 24.09.2011
Autor: reverend

Hallo Moskito,

auch die Polynomdivision dient nur dazu, etwas zu faktorisieren.

Wenn Du weißt, dass 1017 durch 9 teilbar ist - was über die Quersummenregel ja leicht zu ermitteln ist - dann findest Du den andern Faktor eben über Division. 1017:9=113, also gilt 1017=9*113.

Bei der Polynomdivision geht das nicht anders. Die Zerlegung in Faktoren verändert das Polynom nicht, sondern nur seine Darstellung.

Grüße
reverend


Bezug
                                
Bezug
Nullstellenberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:23 Sa 24.09.2011
Autor: Anopheles

Danke, für den Beitrag! Der hat für das Verständnis deutlich weitergeholfen.. wenn du mir jetzt noch erklären kannst, wie ich von

[mm] \bruch{1}{3}(x^3-3x^2-3x+9) [/mm]

auf die Polynomdivision

[mm] (x^3-3x^2-3x+9) [/mm] : (x-3)

komme, habe ich es glaube ich verstanden..

Bezug
                                        
Bezug
Nullstellenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:30 Sa 24.09.2011
Autor: reverend

Hallo nochmal,

das hat Marius alias M.Rex doch schon erklärt.

1) der Faktor [mm] \tfrac{1}{3} [/mm] vor der ersten Potenz wird ausgeklammert, damit
2) die Regel, dass eine ganzzahlige (und übrigens überhaupt rationale) Nullstelle nur bei einem echten Teiler des absoluten Glieds liegen kann, angewandt werden kann und
3) so die Nullstelle x=3 gefunden wird.

Dann muss das ursprüngliche Polynom (egal ob das Drittel ausgeklammert ist oder nicht) durch (x-3) teilbar sein.

Grüße
reverend


Bezug
        
Bezug
Nullstellenberechnung: Nullstellen-Programm
Status: (Antwort) fertig Status 
Datum: 01:49 So 25.09.2011
Autor: HJKweseleit

Im Anhang ein Programm, wie man der Reihe nach die Nullstellen von Polynomen finden kann. Falls du keine Näherungslösungen mit dem Rechner suchen sollst, wird dir dein Lehrer nur solche Aufgaben geben, bei denen man mit dem beschriebenen Verfahren die Lösungen findet.

Grundlage des Ganzen ist der Satz: Ist a eine Nulstelle des Polynoms P(x), so ist P(x)=(x-a)*g(x), wobei g(x) ebenfalls ein Polynom ist, dessen Grad um 1 kleiner als der von P ist.

Ist a auch eine Nullstelle von g, so kann man davon (x-a) nochmals abspalten usw.. In diesem Fall sagt man: a ist doppelte/3-fache/... Nullstelle von P.


Dateianhänge:
Anhang Nr. 1 (Typ: DOC) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]