matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraOrbits
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Orbits
Orbits < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orbits: Keine Ahnung
Status: (Frage) beantwortet Status 
Datum: 20:54 Mi 27.04.2005
Autor: DaMazen

Irgendwie ist mir diese Aufgabe unklar.. Ich hab nicht den richtigen Ansatz gefunden..

Seien c(n), c(n-1),...,c(0) die Dezimalziffern von a [mm] \in \IN [/mm] und S(a):=c(n)²+c(n-1)²+...+c(0)².

a) Berechnen Sie die bei a [mm] \in [/mm] {1, 2, ..., 100} beginnenden Bahnen von S. Welche Orbits entstehen?

b) Zeigen Sie, dass für alle a [mm] \ge [/mm] 100 gilt: S(a) < a

c) Folgern Sie aus b): Zu jedem a [mm] \in \IN [/mm] ist [mm] S^k(a) [/mm] < 100 für hinreichend großes k.

d) Was folgt aus a) und c) für die Orbits von S?

        
Bezug
Orbits: Etwas unsicher
Status: (Antwort) fertig Status 
Datum: 21:27 Mi 27.04.2005
Autor: Paulus

Lieber Damazen

Ich bin nicht ganz sicher, aber ich denke, unter einem Orbit verstehe man einen Zyklus, der nach einer bestimmten "Anfangsfolge" entsteht.

Das hiesse also:

1 ->1  Orbit bereits fertig. Besteht nur aus der Zahl 1

2 -> 4 -> 16 -> 37 -> 58 -> 89 -> 145 -> 42 -> 20 -> 4 Also wieder die ganze Reihe bei 4 beginnend

Hier wäre also der Orbit der Zyklus
4 -> 16 -> 37 -> 58 -> 89 -> 145 -> 42 -> 20 -> und wieder zur 4 springend

3 -> 9 -> 81 -> 65 -> 61 -> 37  hier wird also der Orbit von oben betreten! Es entsteht kein neuer Orbit!

5 -> 25 -> 29 -> 85 -> 89 -> und jetzt befinden wir wieder im Orbit von 2!

etc, reine Fleissarbeit! Ich weiss nicht, ob noch ein neuer Orbit entsteht. Das findest du mit etwas Fleiss sicher selber heraus!

Ich hoffe, mit diesen Angaben kannst du jetzt selber ein wenig weiter knobeln. Viel Spass dabei!

Mit lieben Grüssen

Paul

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]