matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenParameterintegrale prüfen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - Parameterintegrale prüfen
Parameterintegrale prüfen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parameterintegrale prüfen: Tipp
Status: (Frage) beantwortet Status 
Datum: 15:07 Sa 17.11.2007
Autor: mabau-07

Aufgabe
Man prüfe für welche x [mm] \in [/mm] R die Paramterintegrale existieren und berechne F(x).
1.
[mm] F(x)=\integral_{0}^{+\infty}\bruch{tdt}{1+x^{4}} [/mm]

2.
[mm] F(x)=\integral_{0}^{+\infty}{\bruch{sin(xt-\pi)}{t}e^{-2t}dt} [/mm]

1.
Für x<0 und x=0 existiert F(x) nicht.
-> x>0  : [mm] F(x)=\limes_{b\rightarrow+\infty}\integral_{0}^{b}\bruch{tdt}{1+x^{4}} [/mm]

Stimmt das soweit ?  Wie löse ich jetzt das Integral ?

2. Wie gehe ich hier am besten Schritt für Schritt vor ?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Parameterintegrale prüfen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:26 So 18.11.2007
Autor: MatthiasKr

Hi,
> Man prüfe für welche x [mm]\in[/mm] R die Paramterintegrale
> existieren und berechne F(x).
>  1.
>  [mm]F(x)=\integral_{0}^{+\infty}\bruch{tdt}{1+x^{4}}[/mm]
>  
> 2.
>  
> [mm]F(x)=\integral_{0}^{+\infty}{\bruch{sin(xt-\pi)}{t}e^{-2t}dt}[/mm]
>  
> 1.
>  Für x<0 und x=0 existiert F(x) nicht.
>  -> x>0  :

> [mm]F(x)=\limes_{b\rightarrow+\infty}\integral_{0}^{b}\bruch{tdt}{1+x^{4}}[/mm]
>  
> Stimmt das soweit ?  Wie löse ich jetzt das Integral ?

wie kommst du auf diese loesung? ist dir bewusst, was du machen sollst? die integrationsvariable ist $t$, der term [mm] $1/(x^4+1)$ [/mm] ist also nur eine konstante. in dieser aufgabe kannst du die konstante einfach rausziehen, unabhaengig von x.

>  
> 2. Wie gehe ich hier am besten Schritt für Schritt vor ?

du musst schon selbst versuchen, das integral in den griff zu bekommen. wie gesagt, x ist konstant. experimentiere, ob du eine stammfunktion finden kannst und dann ob der grenzwert gegen [mm] \infty [/mm] existiert.

gruss
matthias


>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]