matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenPartielle Ableitungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - Partielle Ableitungen
Partielle Ableitungen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Ableitungen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 23:11 Mi 22.04.2009
Autor: stonefree1343

Aufgabe
Bestimmen Sie die partiellen Ableitungen von der Funktion
f(x,y) = [mm] (x^3 [/mm] - sin(x))y + [mm] e^{2y} [/mm]
- [mm] f_x [/mm] (x,y) = ?
- [mm] f_{xx} [/mm] (x,y) = ?
- [mm] f_y [/mm] (x,y) = ?
- [mm] f_{yy} [/mm] (x,y) = ?
- [mm] f_{xy} [/mm] (x,y) = ?

Wie kann ich diese Funktion ableiten? Das Grundprinzip für partielle Ableitungen habe ich verstanden - aber bei solch komplexen Funktionen komme ich nicht weiter.
Habe nur für [mm] f_y [/mm] = [mm] x^3 [/mm] - sin(x) + [mm] e^{2y} \cdot [/mm]  2 (ist das richtig??)
Und für [mm] f_{yy} [/mm] = [mm] 4e^{2y} \cdot [/mm]  ???

Wer kann mir die Schritte, die ich für die Ableitungen dieser Funktion brauche erklären??



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Partielle Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:47 Mi 22.04.2009
Autor: schachuzipus

Hallo stonefree,

> Bestimmen Sie die partiellen Ableitungen von der Funktion
>  f(x,y) = [mm](x^3[/mm] - sin(x))y + [mm]e^{2y}[/mm]
>  - [mm]f_x[/mm] (x,y) = ?
>  - [mm]f_{xx}[/mm] (x,y) = ?
>  - [mm]f_y[/mm] (x,y) = ?
>  - [mm]f_{yy}[/mm] (x,y) = ?
>  - [mm]f_{xy}[/mm] (x,y) = ?
>  Wie kann ich diese Funktion ableiten? Das Grundprinzip für
> partielle Ableitungen habe ich verstanden - aber bei solch
> komplexen Funktionen komme ich nicht weiter.
>  Habe nur für [mm]f_y[/mm] = [mm]x^3[/mm] - sin(x) + [mm]e^{2y} \cdot[/mm]  2 (ist das
> richtig??)

[daumenhoch]

Aber sowas von richtig!

>  Und für [mm]f_{yy}[/mm] = [mm]4e^{2y} \cdot[/mm]  ??? [ok]

Ja, ist doch gut, du hast das Prinzip doch verstanden.

Für die partielle Ableitung nach x betrachte nun umgekehrt y als Konstante, also wie eine Zahl ...


Ich bin zuversichtlich, dass du das hinbekommst, die partielle Ableitung nach y war ja schon sehr gut, außerdem hast du im anderen thread schon Anregungen bekommen!

Probier's einfach mal, kann ja nix kaputt gehen ;-)

Wir kontrollieren gerne.

Kein Mathe ohne Versuche ... ;-)

>  
> Wer kann mir die Schritte, die ich für die Ableitungen
> dieser Funktion brauche erklären??
>  
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt


LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]