matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisPartielle Integration
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - Partielle Integration
Partielle Integration < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Integration: Frage
Status: (Frage) beantwortet Status 
Datum: 17:55 Do 16.12.2004
Autor: Lola020

Hallo, hallo,

ich habe folgendes (wahrscheinlich eher triviales) Problem.

Ich muss  [mm] \integral_{0}^{ \infty} xe^{- \lambda x} [/mm] berechnen

Soweit bin ich bisher gekommen. Über die partielle Integration:


∫ u’*v dx = u*v - ∫ u*v’ dx


setze ich: u’= [mm] e^{-\lambda x} [/mm]   u= ?
          v = x v’= 1

mein Problem ist nun, dass ich nicht weiß, wie ich auf die Stammfunktion von [mm] e^{- \lambda x} [/mm]  komme. Ich habe sie zwar  [mm] \bruch{1}{ \lambda}* e^{-\lambda x} [/mm]  und weiß auch wie ich sie ableiten könnte (ich nehme mal an:

[mm] \bruch{1}{\lambda}*e^{-\lambda x} *(\lambda*x) [/mm] ’ = [mm] e^{-\lambda x}*1 [/mm] = [mm] e^{-\lambda x} [/mm] , aber wie schon erwähnt, wie ich zu dieser Stammfunktion komme ist mir ein Rätsel.



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 18:22 Do 16.12.2004
Autor: cremchen

Halli hallo!

> mein Problem ist nun, dass ich nicht weiß, wie ich auf die
> Stammfunktion von [mm]e^{- \lambda x}[/mm]  komme. Ich habe sie zwar
>  [mm]\bruch{1}{ \lambda}* e^{-\lambda x}[/mm]  und weiß auch wie ich
> sie ableiten könnte (ich nehme mal an:
>  
> [mm]\bruch{1}{\lambda}*e^{-\lambda x} *(\lambda*x)[/mm] ’ =
> [mm]e^{-\lambda x}*1[/mm] = [mm]e^{-\lambda x}[/mm] , aber wie schon erwähnt,
> wie ich zu dieser Stammfunktion komme ist mir ein Rätsel.

Du bist doch eigentlich schon relativ weit!
Du weißt, das [mm] e^{x} [/mm] auf- und abgeleitet wieder [mm] e^{x} [/mm] ist!
Es gilt nun:
[mm] \int{a*e^{bx}dx}=\bruch{a}{b}*e^{bx} [/mm]

Das heißt, bis auf das Vorzeichen hast du alles richtig gemacht, also lautet die Stammfunktion [mm] -\bruch{1}{\lambda}*e^{-\lambda{x}} [/mm]

Also ich hoffe ich konnte dir weiterhelfen!

Liebe Grüße
Ulrike

Bezug
                
Bezug
Partielle Integration: Antwort
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:30 Do 16.12.2004
Autor: Lola020

Vielen Dank für die prompte Hilfe cremchen! Häufig scheitert es an so einfachen Dingen :p

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]