matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheoriePartielle Integration
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integrationstheorie" - Partielle Integration
Partielle Integration < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:10 Mo 16.05.2011
Autor: mathefreak89

Aufgabe
[mm] \integral_{}^{} sin^2(a)\, [/mm] d(a)

Hallöchen:)

Ich steh bei obiger Aufgabe ein wenig auf dem Schlauch und finde keinen Ansatz..
Hab es jetz probiert indem ich [mm] sin^2(a) [/mm] umgeschrieben habe zu sin(a)*sin(a) was mich dann zu einer endlosschleife geführt hat xD

Dann habe ich es probiert als [mm] sin^2(a)*1 [/mm] zu schreiben wobei ich dann

[mm] u=sin^2(a) [/mm]  v´=1 gesetz habe was mich zu


[mm] =sin^2(a) -\integral_{}^{} x*2sin(a)*cos(a)\, [/mm] dx  geführt hat was auch irgendwie nich so hilfreich ist -.-

Bitte rettet mich xD

mfg mathefreak

        
Bezug
Partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 17:14 Mo 16.05.2011
Autor: kamaleonti

Moin,
> [mm]\integral_{}^{} sin^2(a)\,[/mm] d(a)
>  Hallöchen:)
>  
> Ich steh bei obiger Aufgabe ein wenig auf dem Schlauch und
> finde keinen Ansatz..
>  Hab es jetz probiert indem ich [mm]sin^2(a)[/mm] umgeschrieben habe
> zu sin(a)*sin(a) was mich dann zu einer endlosschleife
> geführt hat xD
>  
> Dann habe ich es probiert als [mm]sin^2(a)*1[/mm] zu schreiben wobei
> ich dann
>  
> [mm]u=sin^2(a)[/mm]  v´=1 gesetz habe was mich zu

Setze besser [mm] u:=\sin(x) [/mm] und [mm] v'(x):=\sin(x) [/mm] und verwende nach der partiellen Integration die Identität [mm] \sin^2(x)+\cos^2(x)=1 [/mm]

>
>
> [mm]=sin^2(a) -\integral_{}^{} x*2sin(a)*cos(a)\,[/mm] dx  geführt
> hat was auch irgendwie nich so hilfreich ist -.-
>  
> Bitte rettet mich xD
>  
> mfg mathefreak

LG

Bezug
                
Bezug
Partielle Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:21 Mo 16.05.2011
Autor: mathefreak89

Aber wenn ich das wie Vorgeschlagen mache erhalte ich doch

[mm] -cos(a)*sin(a)-\integral_{}^{} -cos(a)*cos(a)\, [/mm] d

was ja leider irgendwie nich der vorgeschlagenen form entspricht?xD

oder hab ich einen fehler bei der Anwendung gemacht?

Bezug
                        
Bezug
Partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 17:25 Mo 16.05.2011
Autor: schachuzipus

Hallo mathefreak89,

> Aber wenn ich das wie Vorgeschlagen mache erhalte ich doch
>
> [mm]-cos(a)*sin(a)-\integral_{}^{} -cos(a)*cos(a)\,[/mm] d[mm]\red{a}[/mm] [ok]

Also [mm]\int{\sin^2(\alpha) \ d\alpha}=-\sin(\alpha)\cdot{}\cos(\alpha)+\int{\cos^2(\alpha) \ d\alpha}[/mm]

Nun die Identität: [mm]\sin^2(\alpha)+\cos^2(\alpha)=1[/mm], also [mm]\cos^2(\alpha)=1-\sin^2(\alpha)[/mm]

Setze das im hinteren Integral ein, dann kannst du schlussendlich die Gleichung nach [mm]\int{\sin^2(\alpha) \ d\alpha}[/mm] auflösen.

>
> was ja leider irgendwie nich der vorgeschlagenen form
> entspricht?xD
>
> oder hab ich einen fehler bei der Anwendung gemacht?

Nein, bisher ist alles ok, rechne nun weiter

Gruß

schachuzipus


Bezug
                                
Bezug
Partielle Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:43 Mo 16.05.2011
Autor: mathefreak89

soo

ich hab dann ja


[mm] \integral_{}^{} sin^2(a)\, da=-sin(a)cos(a)+\integral_{}^{} 1-sin^2(a)\, [/mm] dx

dann habe ich es wie folgt umgeschrieben


[mm] \integral_{}^{} sin^2(a)\, da=-sin(a)cos(a)+\integral_{}^{}1da-\integral_{}^{} sin^2(a)\, [/mm] da

also:

[mm] 2*\integral_{}^{} sin^2(a)\, [/mm] da=-sin(a)cos(a)+a

was mich zu der Stammfunktion:

[mm] F(a)=\bruch{1}{2}*a+\bruch{1}{2}*-cos(a)sin(a)+c [/mm] führt

Alles richtig?

Wenn ja ,wäre ich niemals darauf gekommen weil ich den linken Teil der Gleichung überhaupt nicht beachtet habe^^

UNd viele dank

Bezug
                                        
Bezug
Partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 17:46 Mo 16.05.2011
Autor: schachuzipus

Hallo nochmal,

> soo
>
> ich hab dann ja
>
>
> [mm]\integral_{}^{} sin^2(a)\, da=-sin(a)cos(a)+\integral_{}^{} 1-sin^2(a)\,[/mm]
> dx
>
> dann habe ich es wie folgt umgeschrieben
>
>
> [mm]\integral_{}^{} sin^2(a)\, da=-sin(a)cos(a)+\integral_{}^{}1da-\integral_{}^{} sin^2(a)\,[/mm] [mm]\red{da}[/mm] [ok]
> da
>
> also:
>
> [mm]2*\integral_{}^{} sin^2(a)\,[/mm] da=-sin(a)cos(a)+a [ok]
>
> was mich zu der Stammfunktion:
>
> [mm]F(a)=\bruch{1}{2}*a+\bruch{1}{2}*-cos(a)sin(a)+c[/mm] führt [ok]
>
> Alles richtig?

Ja!

>
> Wenn ja ,wäre ich niemals darauf gekommen weil ich den
> linken Teil der Gleichung überhaupt nicht beachtet habe^^

Jo, das ist so ein Standardtrick, den es sich zu merken lohnt.

Nun hast du ihn einmal gesehen und selber durchgerechnet, so dass du beim nächsten Mal vllt. ganz von selbst drauf kommst ...

>
> UNd viele dank

Gruß

schachuzipus


Bezug
                                                
Bezug
Partielle Integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:50 Mo 16.05.2011
Autor: mathefreak89

ich hoffe es doch danke euch :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]