matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenmathematische StatistikPoisson-Verteilung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "mathematische Statistik" - Poisson-Verteilung
Poisson-Verteilung < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Poisson-Verteilung: Maximum-Likelihood-Schätzer
Status: (Frage) beantwortet Status 
Datum: 11:22 Di 28.10.2014
Autor: GeMir

Aufgabe
Seien [mm] $$X_1, \ldots, X_n \overset{iid}{\sim} Po(\lambda), [/mm] \ [mm] \lambda [/mm] > 0$$ Bestimmen Sie den Maximum-Likelihood-Schätzer für [mm] $\lambda$. [/mm]



Die Likelihood-Funktion ist gegeben durch:
$L(p | [mm] x_1, \ldots, x_n) [/mm] &= [mm] \prod_{i=1}^{n}{\frac{\lambda^{x_i}}{x_i!}e^{-\lambda}}$ [/mm]

(gemeinsame Dichte von $n$ stochastisch unabhängigen Zufallsvariablen).

Die Log-Likelihood-Funktion ist somit gegeben durch:

$l(p | [mm] x_1, \ldots, x_n) [/mm] = [mm] \ln\Bigg(\prod_{i=1}^{n}{\frac{\lambda^{x_i}}{x_i!}e^{-\lambda}}\Bigg) [/mm] = [mm] \sum_{i=1}^{n}{\ln\Bigg(\frac{\lambda^{x_i}}{x_i!}e^{-\lambda}}\Bigg)\\ [/mm]
= [mm] \sum_{i=1}^{n}{\big(\ln(\lambda^{x_i}) - \ln(x_i!) + \ln(e^{-\lambda})\big)}\\ [/mm]
= [mm] \sum_{i=1}^{n}{\big(x_i\cdot\ln(\lambda) - \ln(x_i!) -\lambda\big)}\\ [/mm]
= [mm] \ln(\lambda)\cdot\sum_{i=1}^{n}{x_i} [/mm] - [mm] \sum_{i=1}^{n}{\ln(x_i!)} [/mm] - [mm] \sum_{i=1}^{n}{\lambda}\\ [/mm]
= [mm] \ln(\lambda)\cdot n\cdot\bar{x} [/mm] - [mm] \sum_{i=1}^{n}{\ln(x_i!)} [/mm] - [mm] n\cdot\lambda$ [/mm]

Notwendige Bedingung: [mm] $\frac{\partial l}{\partial p} [/mm] = 0$

[mm] $\frac{\partial l}{\partial \lambda} [/mm] &= [mm] \frac{1}{\lambda}\cdot n\cdot\bar{x} [/mm] - n$

Also:

[mm] $\frac{1}{\lambda}\cdot n\cdot\bar{x} [/mm] - n = 0$

Wegen $n [mm] \neq [/mm] 0$ und [mm] $\lambda [/mm] > 0$:

[mm] $\frac{1}{\lambda}\cdot\bar{x} [/mm] - 1 = [mm] 0\\ [/mm]
[mm] \frac{1}{\lambda}\cdot\bar{x} [/mm] = [mm] 1\\ [/mm]
[mm] \bar{x} [/mm] = [mm] \lambda$ [/mm]

Hinreichende Bedingung: [mm] $\frac{\partial^2 l}{\partial \lambda\partial \lambda} \neq [/mm] 0$

[mm] $\frac{\partial^2 l}{\partial \lambda\partial \lambda} [/mm] = [mm] -\frac{1}{\lambda^2}\cdot n\cdot\bar{x}$ [/mm]

Und an der Stelle komme ich irgendwie nicht weiter, weil der Wert von [mm] $\bar{x}$ [/mm] ja von einer konkreten Realisation der Stichprobe abhängt.

Ups, die Frage hat sich erledigt: der Träger ist ja [mm] \mathbb{N}_0 [/mm] :)

        
Bezug
Poisson-Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:59 Di 28.10.2014
Autor: DieAcht

Hallo GeMir,


> Seien [mm]X_1, \ldots, X_n \overset{iid}{\sim} Po(\lambda), \ \lambda > 0[/mm]
> Bestimmen Sie den Maximum-Likelihood-Schätzer für
> [mm]$\lambda$.[/mm]
>  
>
> Die Likelihood-Funktion ist gegeben durch:
> [mm]L(p | x_1, \ldots, x_n) &= \prod_{i=1}^{n}{\frac{\lambda^{x_i}}{x_i!}e^{-\lambda}}[/mm]
>  
> (gemeinsame Dichte von [mm]n[/mm] stochastisch unabhängigen
> Zufallsvariablen).
>  
> Die Log-Likelihood-Funktion ist somit gegeben durch:
>
> $l(p | [mm]x_1, \ldots, x_n)[/mm] =
> [mm]\ln\Bigg(\prod_{i=1}^{n}{\frac{\lambda^{x_i}}{x_i!}e^{-\lambda}}\Bigg)[/mm]
> =
> [mm]\sum_{i=1}^{n}{\ln\Bigg(\frac{\lambda^{x_i}}{x_i!}e^{-\lambda}}\Bigg)\\[/mm]
>   = [mm]\sum_{i=1}^{n}{\big(\ln(\lambda^{x_i}) - \ln(x_i!) + \ln(e^{-\lambda})\big)}\\[/mm]
>  
> = [mm]\sum_{i=1}^{n}{\big(x_i\cdot\ln(\lambda) - \ln(x_i!) -\lambda\big)}\\[/mm]
>  
> = [mm]\ln(\lambda)\cdot\sum_{i=1}^{n}{x_i}[/mm] -
> [mm]\sum_{i=1}^{n}{\ln(x_i!)}[/mm] - [mm]\sum_{i=1}^{n}{\lambda}\\[/mm]
>   = [mm]\ln(\lambda)\cdot n\cdot\bar{x}[/mm] -
> [mm]\sum_{i=1}^{n}{\ln(x_i!)}[/mm] - [mm]n\cdot\lambda$[/mm]
>  
> Notwendige Bedingung: [mm]\frac{\partial l}{\partial p} = 0[/mm]
>
> [mm]\frac{\partial l}{\partial \lambda} &= \frac{1}{\lambda}\cdot n\cdot\bar{x} - n[/mm]
>  
> Also:
>  
> [mm]\frac{1}{\lambda}\cdot n\cdot\bar{x} - n = 0[/mm]
>  
> Wegen [mm]n \neq 0[/mm] und [mm]\lambda > 0[/mm]:
>  
> [mm]$\frac{1}{\lambda}\cdot\bar{x}[/mm] - 1 = [mm]0\\[/mm]
>  [mm] \frac{1}{\lambda}\cdot\bar{x}[/mm] = [mm]1\\[/mm]
>  [mm] \bar{x}[/mm] = [mm]\lambda$[/mm]
>  
> Hinreichende Bedingung: [mm]\frac{\partial^2 l}{\partial \lambda\partial \lambda} \neq 0[/mm]
>
> [mm]\frac{\partial^2 l}{\partial \lambda\partial \lambda} = -\frac{1}{\lambda^2}\cdot n\cdot\bar{x}[/mm]

[ok]

> Und an der Stelle komme ich irgendwie nicht weiter, weil
> der Wert von [mm]\bar{x}[/mm] ja von einer konkreten Realisation der
> Stichprobe abhängt.
>  
> Ups, die Frage hat sich erledigt: der Träger ist ja
> [mm]\mathbb{N}_0[/mm] :)

Richtig. Wegen [mm] \lambda>0 [/mm] ist dann [mm] -\frac{1}{\lambda^2}<0 [/mm] und wegen [mm] n\not=0 [/mm] folgt..


Gruß
DieAcht

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]