matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikPoisson-Verteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Poisson-Verteilung
Poisson-Verteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Poisson-Verteilung: Tipp / Korrektur
Status: (Frage) beantwortet Status 
Datum: 23:22 Di 15.11.2011
Autor: core_1

Aufgabe
[Externes Bild http://i42.tinypic.com/qst6ch.png]

Gesucht ist die Wahrscheinlichkeit das genau 5 Punkte im Einheitskreis landen.

Ich habe mir erstmal überlegt die Wahrscheinlichkeit das, ein Punkt im Einheitskreis landet ist

mit Poisson:

[mm] e^{-\lambda}*\bruch{\lambda^{k}}{k!} [/mm]

p= [mm] \bruch{\pi}{n^{2}} [/mm]
n = [mm] n^{2} [/mm]

[mm] \lambda [/mm] = n*p = [mm] \pi [/mm]

[mm] e^{-\pi}*\bruch{\pi^{5}}{5!} [/mm] = [mm] 5,3145*10^{-10} [/mm]

Kann dieser Wert stimmen?


Gruß




        
Bezug
Poisson-Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:07 Mi 16.11.2011
Autor: donquijote


> [Externes Bild http://i42.tinypic.com/qst6ch.png]
>  
> Gesucht ist die Wahrscheinlichkeit das genau 5 Punkte im
> Einheitskreis landen.

Ich gehe mal davon aus, dass [mm] n^2 [/mm] Punkte zufällig in einem Quadrat mit Seitenlänge 2n verteilt werden.

>  Ich habe mir erstmal überlegt die Wahrscheinlichkeit das,
> ein Punkt im Einheitskreis landet ist
>
> mit Poisson:
>  
> [mm]e^{-\lambda}*\bruch{\lambda^{k}}{k!}[/mm]
>  

Der Ansatz mit der Poison-Verteilung ist ok

> p= [mm]\bruch{\pi}{n^{2}}[/mm]

Nach dem Bild ist die Quadratfläche und damit der Nenner [mm] 4n^2 [/mm]

>  n = [mm]n^{2}[/mm]

[mm] n=n^2 [/mm] ist Quatsch (für [mm] n\ne [/mm] 1), hier hast du wohl zwei verschiedenen Größen den selben Namen gegeben.

>  
> [mm]\lambda[/mm] = n*p = [mm]\pi[/mm]
>  
> [mm]e^{-\pi}*\bruch{\pi^{5}}{5!}[/mm] = [mm]5,3145*10^{-10}[/mm]

Bei Quadratfläche [mm] n^2 [/mm] stimmt [mm] $e^{-\pi}*\bruch{\pi^{5}}{5!}$, [/mm] aber das rechte Ergebnis passt nicht.

>  
> Kann dieser Wert stimmen?
>  
>
> Gruß
>  
>
>  


Bezug
                
Bezug
Poisson-Verteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:32 Mi 16.11.2011
Autor: core_1

Danke =)

[mm] n=n^{2} [/mm] habe ich gewählt, weil ja [mm] n^{2} [/mm] Punkte uniform in die Fläche reingeworfen werden.

Stimmt bei der Gesamtfläche habe ich geschnlampt :D

jetzt komme ich auf [mm] e^{-\bruch{\pi}{4}}*\bruch{\bruch{\pi}{4}^{5}}{5!} [/mm]

Wolfram sagt 0,0011

http://www.wolframalpha.com/input/?i=exp%28-pi%2F4%29*%28%28pi%2F4%29%5E5%2F%285%21%29%29

Bezug
                        
Bezug
Poisson-Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:37 Mi 16.11.2011
Autor: donquijote


> Danke =)
>  
> [mm]n=n^{2}[/mm] habe ich gewählt, weil ja [mm]n^{2}[/mm] Punkte uniform in
> die Fläche reingeworfen werden.

Da hab ich mich auch nur über die Notation moniert, da das gleiche Symbol n in zwei unterschiedlichen Bedeutungen auftritt.

>  
> Stimmt bei der Gesamtfläche habe ich geschnlampt :D
>  
> jetzt komme ich auf
> [mm]e^{-\bruch{\pi}{4}}*\bruch{\bruch{\pi}{4}^{5}}{5!}[/mm]
>  
> Wolfram sagt 0,0011

Das sieht jetzt gut aus.

>  
> http://www.wolframalpha.com/input/?i=exp%28-pi%2F4%29*%28%28pi%2F4%29%5E5%2F%285%21%29%29


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]