matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Potenzen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mathe Klassen 8-10" - Potenzen
Potenzen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:01 So 17.08.2008
Autor: zitrone

Hallo,

ich glaube, dass ich jetzt weiß , wie man mit Potenzen rechnen muss.Um auch wirklich sicher zu sein, wollte ich fragen, ob man meine ergebnisse kontrollieren könnte, damit ich es auch wirklich richtig verstanden habe.könnte mir da bitte jemand helfen?

Aufg.:
1)
[mm] \bruch{(ab)^{-2}}{x^{2}y^{-1}} [/mm] * [mm] \bruch{(xy)^{2}}{a^{3}b} [/mm]

[mm] =\bruch{a^{-2}*b^{-2}*x^{2}*y^{2}}{x^{2}*y^{-1}*a^{3}*b} [/mm]

[mm] =\bruch{b^{-1}*y^{1}}{a^{1}} [/mm]

2)
[mm] \bruch{(ax)^{-2}}{(by)^{3}} [/mm] * [mm] \bruch{(abx)^{2}}{y^{-3}} [/mm]

[mm] =\bruch{a^{-2}*x^{-2}*a^{2}*b^{2}*x^{2}}{b^{3}*y^{3}*y^{-3}} [/mm]

[mm] =\bruch{a*x}{y*b^{1}} [/mm]

lg zitrone

        
Bezug
Potenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:13 So 17.08.2008
Autor: angela.h.b.


> Hallo,
>  
> ich glaube, dass ich jetzt weiß , wie man mit Potenzen
> rechnen muss.Um auch wirklich sicher zu sein, wollte ich
> fragen, ob man meine ergebnisse kontrollieren könnte, damit
> ich es auch wirklich richtig verstanden habe.könnte mir da
> bitte jemand helfen?
>  
> Aufg.:
>  1)
>  [mm]\bruch{(ab)^{-2}}{x^{2}y^{-1}}[/mm] * [mm]\bruch{(xy)^{2}}{a^{3}b}[/mm]
>  
> [mm]=\bruch{a^{-2}*b^{-2}*x^{2}*y^{2}}{x^{2}*y^{-1}*a^{3}*b}[/mm]

Hallo,

bis hierher ist's gut.

Jetzt sortieren wir mal:

[mm] ...=\bruch{a^{-2}*b^{-2}*x^{2}*y^{2}}{a^{3}*b*x^{2}*y^{-1}} [/mm]

Nun kannst Du verwenden, daß [mm] \bruch{r^p}{r^q}=r^{p-q} [/mm] ist, Damit erhältst Du

[mm] ...=a^{...}b^{...}x^{...}y^{...}, [/mm]

und der Übersichtlichkeit halber kannst Du dann alles was mit neg. Hochzeahlen ist, unter den Bruch bringen - dann allerdings mit positiver Hochzahl.



>  
> [mm]=\bruch{b^{-1}*y^{1}}{a^{1}}[/mm]
>  
> 2)
>  [mm]\bruch{(ax)^{-2}}{(by)^{3}}[/mm] * [mm]\bruch{(abx)^{2}}{y^{-3}}[/mm]
>
> [mm]=\bruch{a^{-2}*x^{-2}*a^{2}*b^{2}*x^{2}}{b^{3}*y^{3}*y^{-3}}[/mm]

Bis hierher ist's richtig.

Es ist doch [mm] r^p*r^q=r^{p+q}, [/mm]

also ist z.B. [mm] c^{-4}*c^{4}=c^0, [/mm] und [mm] c^0=1 [/mm] - und nicht etwa c.

Gruß v. Angela

>
> [mm]=\bruch{a*x}{y*b^{1}}[/mm]
>  
> lg zitrone


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]