matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraPotenzmenge
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Potenzmenge
Potenzmenge < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzmenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:29 Sa 28.04.2007
Autor: solero

Aufgabe
Seien A und B Teilmengen von C. Zeigen Sie:
a.) { K [mm] \in [/mm] P(C): B [mm] \subseteq [/mm] K} [mm] \subseteq [/mm] { K [mm] \in [/mm] P(C): A [mm] \subseteq [/mm] K } [mm] \Rightarrow [/mm] A [mm] \subseteq [/mm]  B

b.) { K [mm] \in [/mm] P(C): B [mm] \subseteq [/mm] K } [mm] \cap [/mm] { K [mm] \in [/mm] P(C): A [mm] \subseteq [/mm] K } = { K [mm] \in [/mm] P(C):  (A [mm] \cup [/mm] B) [mm] \subseteq [/mm] K }

Dabei ist mit P(C) = {M: M [mm] \subseteq [/mm] C}  die Potenzmenge (= Menge aller Teilmengen) gemeint.

hallo,

und zwar habe ich folgendes problem. die aussage in a.) z.b. tue ich verstehen, nur fällt es mir schwer, wie man beim beweisen dieser aussage vorgehen soll! kann mir vlt bitte jemand einen tipp geben?

        
Bezug
Potenzmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 15:15 Sa 28.04.2007
Autor: felixf

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo!

> Seien A und B Teilmengen von C. Zeigen Sie:
>  a.) { K [mm]\in[/mm] P(C): B [mm]\subseteq[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

K} [mm]\subseteq[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

{ K [mm]\in[/mm] P(C): A

> [mm]\subseteq[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

K } [mm]\Rightarrow[/mm] A [mm]\subseteq[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

  B

>  
> b.) { K [mm]\in[/mm] P(C): B [mm]\subseteq[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

K } [mm]\cap[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

{ K [mm]\in[/mm] P(C): A

> [mm]\subseteq[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

K } = { K [mm]\in[/mm] P(C):  (A [mm]\cup[/mm] B) [mm]\subseteq[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

K }

>  
> Dabei ist mit P(C) = {M: M [mm]\subseteq[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

C}  die Potenzmenge (=

> Menge aller Teilmengen) gemeint.
>  hallo,
>  
> und zwar habe ich folgendes problem. die aussage in a.)
> z.b. tue ich verstehen, nur fällt es mir schwer, wie man
> beim beweisen dieser aussage vorgehen soll! kann mir vlt
> bitte jemand einen tipp geben?

Es gibt da einen ganz einfachen: $B$ selber ist in der ersten Menge enthalten.

Zu b): Zeige beide Inklusionen. Nimm dir z.B. eine Menge $K$, die in $\{ K \in P(C) \mid A \cup B \subseteq K \}$ liegt, und zeige dass sie in $\{ K \in P(C) \mid A \subseteq K \}$ und $\{ K \in P(C) \mid B \subseteq K \}$ liegt, womit sie in dem Durchschnitt dieser beiden Mengen liegt.

LG Felix


Bezug
                
Bezug
Potenzmenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:32 Sa 28.04.2007
Autor: solero

wie meinst du das, B ist in der ersten menge enthalten?? in der erste menge steht doch nur das B teilmenge von k ist und diese menge wiederum teilmenge von A ist, welches auch teilmenge von K ist.
ich verstehe nicht, wie man draus schlussfolgern kann, dass A teilmenge von B ist!! müsste es nicht umgekehrt heissen, also B teilmenge von A????????

Bezug
                        
Bezug
Potenzmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 19:18 Sa 28.04.2007
Autor: felixf

Hallo!

> wie meinst du das, B ist in der ersten menge enthalten?? in
> der erste menge steht doch nur das B teilmenge von k ist
> und diese menge wiederum teilmenge von A ist, welches auch
> teilmenge von K ist.

Du solltest dir mal ueberlegen, wass die Menge [mm] $\{ K \in P(C) : B \subseteq K \}$ [/mm] ueberhaupt sein soll. Das ist die Menge aller Teilmengen von $C$, die $B$ enthalten. Wieso ist $B$ jetzt in dieser Menge enthalten?

>  ich verstehe nicht, wie man draus schlussfolgern kann,
> dass A teilmenge von B ist!! müsste es nicht umgekehrt
> heissen, also B teilmenge von A????????

Nein.

Ueberleg dir mal genau, was die Inklusion [mm] $\{ K \in P(C) : B \subseteq K \} \subseteq \{ K \in P(C) : A \subseteq K \}$ [/mm] fuer die Teilmengen in [mm] $\{ K \in P(C) : B \subseteq K \}$ [/mm] bedeutet.

LG Felix


Bezug
                                
Bezug
Potenzmenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:18 So 29.04.2007
Autor: Lughor

Könntest du einen Tipp geben, wie man das nun zeigen soll?
Bisher habe ich es noch nicht geschaft, das zu beweisen.

Bezug
                                        
Bezug
Potenzmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 20:22 So 29.04.2007
Autor: felixf

Hallo!

> Könntest du einen Tipp geben, wie man das nun zeigen soll?
>  Bisher habe ich es noch nicht geschaft, das zu beweisen.

Der Beweis steht hier schon in diesem Thread. Das schwere bei dieser Aufgabe ist, die Mengen zu verstehen und die Inklusion richtig zu ``uebersetzen''. Wenn du damit nicht klar kommst, musst du uns schon genau verraten wo du steckenbleibst, dann koennen wir versuchen dir zu helfen.

LG Felix



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]