matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungProblem bei Aufgabe v. nichtlin. analy. Geometrie
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra / Vektorrechnung" - Problem bei Aufgabe v. nichtlin. analy. Geometrie
Problem bei Aufgabe v. nichtlin. analy. Geometrie < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Problem bei Aufgabe v. nichtlin. analy. Geometrie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:39 Mi 01.09.2004
Autor: Feivel

Hallo! Ich habe bei einer Aufgabe, dass ich überhaupt nicht weis wie bze. wo ich ansetzen soll!

Die Aufgabe lautet: Ein Kreis geht durch die Punkte A und B und wird von der Geraden t berührt. Berechne die Koordinaen des Berührpunktes und ermittle die Kreisgleichung! geg. A (0/3), B(1/0), t: 3x - 4y=13

jetzt gingen meine Überlegungen dahin, dass ich vielleicht den x- bzw. y-Wert einer der Punkte A oder B in die Tangente einsetze, nur stimmt dies leider nicht da die Tangentengleichung dann nicht stimmt.

Könnte mir bitte jemand einen Stoss in die richtige Richtung geben?

Danke in Vorraus für jede Antwort!

Ich habe diese Frage in keinem weiteren Forum gestellt.

        
Bezug
Problem bei Aufgabe v. nichtlin. analy. Geometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 10:55 Mi 01.09.2004
Autor: Julius

Hallo Feivel!

Dann will ich dir mal einen Fahrplan geben:

Es sei [mm] $M=(x_M/y_M)$ [/mm] der Mittelpunkt des gesuchten Kreises und [mm] $B=(x_B/y_B)$ [/mm] der gesuchte Berührpunkt.

1) Aus der Beziehung

[mm] $[(0-x_M)^2 [/mm] + [mm] (3-y_M)^2] [/mm] - [mm] [(1-x_M)^2 [/mm] + [mm] (0-y_M)^2]=0$ [/mm]

(denn beide Terme in eckigen Klammern sind ja gleich dem Radius zum Quadrat)

erhältst du eine lineare Beziehung zwischen [mm] $x_M$ [/mm] und [mm] $y_M$. [/mm]

2) Der Berührpunkt muss auf der Tangente liegen und man erhält eine lineare Beziehung

[mm] $3x_B [/mm] - [mm] 4y_B [/mm] = 13$

zwischen [mm] $x_B$ [/mm] und [mm] $y_B$. [/mm]

3) Nutzt man beide linearen Beziehungen aus (d.h. löst man oben jeweils nach [mm] $y_M$ [/mm] und [mm] $y_B$ [/mm] auf), so erhält man aus

[mm] $[(0-x_M)^2 [/mm] + [mm] (3-y_M)^2] [/mm] - [mm] [(x_B-x_M)^2 [/mm] + [mm] (y_B-y_M)^2]=0$ [/mm]

eine lineare Beziehung zwischen [mm] $x_M$ [/mm] und [mm] $x_B$. [/mm]

4) Weiterhin muss ja die Gerade, die durch den Mittelpunkt und den Berührpunkt verläuft, senkrecht auf der Tangente stehen, d.h. es muss gelten:

[mm] $\frac{y_M - y_B}{x_M-x_B} [/mm] = - [mm] \frac{4}{3}$. [/mm]

Unter Benutzung von 3) kann man daraus [mm] $x_M$ [/mm] (oder [mm] $x_B$) [/mm] berechnen. Der Rest folgt dann durch Einsetzen in 3), 2) und 1).

Versuche es jetzt bitte mal und melde dich mit einem Lösungsvorschlag. Wir helfen dir dann schon, wenn du nicht weiterkommst. :-)

Liebe Grüße
Julius

Bezug
                
Bezug
Problem bei Aufgabe v. nichtlin. analy. Geometrie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:05 Mi 01.09.2004
Autor: Sigrid

1. Der Mittelpunkt des Kreises liegt auf der Mittelsenkrechten zu AB.
2. Der Abstand des Mittelpunktes von der Geraden t ist gleich der Entfernng vom Punkt a (bzw. B).
Wenn du diese Bedin gungen n Gleichungen um setzt, müsstest du eine Lösung finden.
Viel Erfolg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]