matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesProjektion (Def.)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra Sonstiges" - Projektion (Def.)
Projektion (Def.) < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Projektion (Def.): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:27 Do 16.08.2012
Autor: EvelynSnowley2311

huhu zusammen ;)

Ich lern grad für meine mündl. Prüfung in lin. Algebra und verstehe folgende Definition nicht:

" eine lineare Abbildung T: V [mm] \to [/mm] V heißt projektion von V auf den Teilraum U entlang von Teilraum W, falls V = u  [mm] \oplus [/mm] w gilt und T(x) = u für alle x = u + w [mm] \in [/mm] U+W erfüllt ist."

Kann mir das jemand für Dummies erklären? Anhand  von wiki verstehe ich eig ganz gut was im allg. eine Projektion ist.


Lg,

Eve

        
Bezug
Projektion (Def.): Antwort
Status: (Antwort) fertig Status 
Datum: 10:01 Do 16.08.2012
Autor: angela.h.b.


> huhu zusammen ;)
>  
> Ich lern grad für meine mündl. Prüfung in lin. Algebra
> und verstehe folgende Definition nicht:

Hallo,

>  
> " eine lineare Abbildung T: V [mm]\to[/mm] V heißt projektion von V
> auf den Teilraum U entlang von Teilraum W, falls V = u   [mm]\oplus[/mm] w

Es muß hier [mm] "V=U\oplus [/mm] W " heißen.

> gilt und T(x) = u für alle x = u + w [mm]\in[/mm] U+W

(hier ist [mm] u\in [/mm] U und [mm] w\in [/mm] W)

> erfüllt ist."
>  
> Kann mir das jemand für Dummies erklären?

Wenn Du uns verraten würdest, was genau Du nicht verstehst, dann wäre es leichter...

Man hat hier einen VR V, welcher die direkte Summe zweier Unterräume U und W ist.
Dies hat unter anderem zur Folge, daß man jeden Vektor [mm] v\in [/mm] V in eindeutiger Weise schreiben kann als v=u+w mit [mm] u\in [/mm] U und [mm] w\in [/mm] W.

Weil das so ist, kann man die Abbildung T definieren, die jedem Vektor aus V seine Komponente in Richtung U zuordnet.
Diese Abbildung heißt dann "Projektion von V auf U entlang W".

Beispiel:

Nehmen wir [mm] V:=\IR^3, U:=<\vektor{1\\2\\3}, \vektor{4\\5\\6}> [/mm] , [mm] W:=<\vektor{1\\1\\0}>. [/mm]
Es ist [mm] V=U\oplus [/mm] W.

Wir definieren

[mm] T(v):=r\vektor{1\\2\\3}+s\vektor{4\\5\\6} \qquad [/mm] für [mm] v=r\vektor{1\\2\\3}+s\vektor{4\\5\\6}+t\vektor{1\\1\\0}. [/mm]

Was passiert? Jeder Vektor wird entlang der Richtung [mm] \vektor{1\\1\\0} [/mm] beleuchtet und sein Schatten auf dem Schirm (der Ebene) U betrachtet.

LG Angela




> Anhand  von
> wiki verstehe ich eig ganz gut was im allg. eine Projektion
> ist.
>  
>
> Lg,
>  
> Eve


Bezug
        
Bezug
Projektion (Def.): Antwort
Status: (Antwort) fertig Status 
Datum: 11:49 Do 16.08.2012
Autor: fred97


> huhu zusammen ;)
>  
> Ich lern grad für meine mündl. Prüfung in lin. Algebra
> und verstehe folgende Definition nicht:
>  
> " eine lineare Abbildung T: V [mm]\to[/mm] V heißt projektion von V
> auf den Teilraum U entlang von Teilraum W, falls V = u  
> [mm]\oplus[/mm] w gilt und T(x) = u für alle x = u + w [mm]\in[/mm] U+W
> erfüllt ist."
>  
> Kann mir das jemand für Dummies erklären? Anhand  von
> wiki verstehe ich eig ganz gut was im allg. eine Projektion
> ist.
>  
>
> Lg,
>  
> Eve

Mir ist folgende Def. lieber:

T: V [mm]\to[/mm] V heißt Projektion  : [mm] \gdw T^2=T [/mm]

Dann kann man zeigen (probiers mal !)

T ist eine Projektion   [mm] \gdw [/mm] es gibt Unterräume U und W von V mit:

V= U [mm] \oplus [/mm] W und für x [mm] \in [/mm] V mit x=u+w (u [mm] \in [/mm] U , w [mm] \in [/mm] W) gilt: Tv=u.

In diesem Fall ist Bild(T)=U und Kern(T)=W

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]