matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungPunkt im 90°-Winkel berechnen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra / Vektorrechnung" - Punkt im 90°-Winkel berechnen
Punkt im 90°-Winkel berechnen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Punkt im 90°-Winkel berechnen: 2 Punkte im 90°-Winkel
Status: (Frage) beantwortet Status 
Datum: 10:23 Sa 01.10.2005
Autor: neuling_hier

Hallo, ich habe folgendes Problem:

Gegeben sei eine zweidimensionale "Zeichenebene" (es handelt sich um ein Programm, in dem Fliesskommazahlen nicht  erlaubt sind, aber daran soll's nicht scheitern) mit einem Nullpunkt und den gegebenen Punkten P1 und Q1.

Dabei gibt es auf dem Vektor vom Nullpunkt nach P1 einen Punkt P1', so daß der Vektor P1' -> Q1 im 90°-Winkel zum Vektor Nullpunkt -> P1 steht. Nun "bewegt" sich P1 an eine beliebige andere Stelle der Zeichenebene (= P2). Ich moechte den Punkt Q2 relativ zu P2 setzen, genauso wie Q1 und P1 zueinander stehen (also wieder im 90°-Winkel).

Das Ganze soll ausschließlich auf Vektoren basieren (ohne Winkelfunktionen o.ä.). Wie mache ich das? "Skalarprodukt" kam mir in den Sinn, aber ich bekomme keine brauchbare Lösung hin, um die Position von Q2 in Abhängigkeit von P2 zu berechnen.

Vermutlich sehe ich den Wald vor lauter Bäumen nicht, aber für einen Lichtblick wäre ich super dankbar!!

        
Bezug
Punkt im 90°-Winkel berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:23 Sa 01.10.2005
Autor: ladislauradu

Hallo neuling_hier

> Gegeben sei eine zweidimensionale "Zeichenebene" (es
> handelt sich um ein Programm, in dem Fliesskommazahlen
> nicht  erlaubt sind, aber daran soll's nicht scheitern) mit
> einem Nullpunkt und den gegebenen Punkten P1 und Q1.
>  
> Dabei gibt es auf dem Vektor vom Nullpunkt nach P1 einen
> Punkt P1', so daß der Vektor P1' -> Q1 im 90°-Winkel zum
> Vektor Nullpunkt -> P1 steht. Nun "bewegt" sich P1 an eine
> beliebige andere Stelle der Zeichenebene (= P2). Ich
> moechte den Punkt Q2 relativ zu P2 setzen, genauso wie Q1
> und P1 zueinander stehen (also wieder im 90°-Winkel).
>  
> Das Ganze soll ausschließlich auf Vektoren basieren (ohne
> Winkelfunktionen o.ä.). Wie mache ich das? "Skalarprodukt"
> kam mir in den Sinn, aber ich bekomme keine brauchbare
> Lösung hin, um die Position von Q2 in Abhängigkeit von P2
> zu berechnen.
>  
> Vermutlich sehe ich den Wald vor lauter Bäumen nicht, aber
> für einen Lichtblick wäre ich super dankbar!!

Nehmen wir zwei Punkte P und Q, die in der von dir definierten Beziehung stehen.

Alle Punkte Q müssen folgende Gleichung erfüllen:
[mm]\vec{q}=r\cdot \vec{p}+s\cdot \vec{n}[/mm]                 (1)

wobei r und s beliebige reelle Zahlen sind, und [mm] \vec{n} [/mm] orthogonal zu [mm] \vec{p} [/mm]  ist also [mm] \vec{n}\cdot\vec{p}=0 [/mm]

[mm] \left( \begin{array}{cc} n_{x} & n_{y} \end{array} \right) \cdot \left( \begin{array}{c} p_{x} \\ p_{y} \end{array} \right)=0 [/mm]

[mm]n_{x}p_{x}+n_{y}p_{y}=0[/mm]

Eine Lösung ist

[mm]n_{x}=p_{y}, \qquad n_{y}=-p_{x}[/mm]

Dies in Gleichung (1) eigesetzt ergibt.

[mm] \left( \begin{array}{c} q_{x} \\ q_{y} \end{array} \right)=r \left( \begin{array}{c} p_{x} \\ p_{y} \end{array} \right) +s\left( \begin{array}{c} p_{y} \\ -p_{x} \end{array} \right)= \left( \begin{array}{cc} r & s \\ -s & r \end{array} \right)\cdot \left( \begin{array}{c} p_{x} \\ p_{y} \end{array} \right) [/mm]

Also Punkt Q hängt von zwei Parameter ab r und s. Diese kannst du einschränken, wenn du weitere Bedingungen hinzufügst.

Schöne Grüße, :-)
Ladis

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]