matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeQuadratische Gleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Gleichungssysteme" - Quadratische Gleichung
Quadratische Gleichung < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadratische Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:22 Mi 26.03.2008
Autor: Soonic

Aufgabe
Lösen Sie folgende quadratische Gleichung nach Ugs auf:

Ugs = -K(Ugs-Up)²*Rs

Hallo zusammen. Ich habe bereits die Lösung, jedoch weiß ich nicht, wie man auf diese kommt.

Also:

In den Klammern befindet sich ja ein Binom.

Ugs = -K*Ugs²*Rs+2*K*Ugs*Up*Rs-K*Rs*Up²=0

Das ist ja alles noch klar.

Aber dann:

Ugs²+Ugs* [mm] \bruch{1-2*K*Up*Rs}{K*Rs}+Up²=0 [/mm]


Wie kommt man auf den letzten Schritt? Ugs² und Up² kommen ja vom a² und b² aber was geschieht mit dem mittleren Therm. Das 2ab??? Warum der Bruch?

Vielen Dank im Vorraus


soonic


        
Bezug
Quadratische Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:38 Mi 26.03.2008
Autor: abakus


> Lösen Sie folgende quadratische Gleichung nach Ugs auf:
>  
> Ugs = -K(Ugs-Up)²*Rs
>  Hallo zusammen. Ich habe bereits die Lösung, jedoch weiß
> ich nicht, wie man auf diese kommt.
>
> Also:
>
> In den Klammern befindet sich ja ein Binom.
>
> Ugs = -K*Ugs²*Rs+2*K*Ugs*Up*Rs-K*Rs*Up²=0
>  
> Das ist ja alles noch klar.

Dann nehmen wir mal
Ugs = -K*Ugs²*Rs+2*K*Ugs*Up*Rs-K*Rs*Up²
und bringen alles auf die linke Seite:

Ugs+K*Ugs²*Rs  -2*K*Ugs*Up*Rs + K*Rs*Up² =0

Wir sortieren nach Potenten von Ugs (Da es zwei Summanden mit Ugs gibt, können wir dort ausklammern):
K*Rs*Ugs² + (1-2*K*Up*Rs)*Ugs +K*Rs*Up²=0
Zum Herstellen der Normalform (für p-q-Formels) dividieren wir durch (K*Rs).

Jetzt erhalten wir die von dir angezweifelte Form.

Viele Grüße
Abakus

>
> Aber dann:
>  
> Ugs²+Ugs* [mm]\bruch{1-2*K*Up*Rs}{K*Rs}+Up²=0[/mm]
>  
>
> Wie kommt man auf den letzten Schritt? Ugs² und Up² kommen
> ja vom a² und b² aber was geschieht mit dem mittleren
> Therm. Das 2ab??? Warum der Bruch?
>  
> Vielen Dank im Vorraus
>  
>
> soonic
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]