matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Quadratische Gleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Mathe Klassen 8-10" - Quadratische Gleichung
Quadratische Gleichung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadratische Gleichung: Tipp für Lösungsweg
Status: (Frage) beantwortet Status 
Datum: 09:02 Mi 25.03.2009
Autor: Windbeutel

Aufgabe
Die quadratische Gleichung 5x² + sx - 4 = 0 hat die Lösung 4
Wie heißt die Zweite Lösung
Wie heist s
Benutze den Satz des Vieta

Hallo, ich hänge bei dier Übungsaufgabe schon ne ganze Zeit und hoffe jemand kann mir nen Denkanstoss geben:
Also mir ist klar das ich das ganze erstaml auf Normalform bringen muss, dann habe ich :

x² + [mm] \bruch{s}{5} [/mm] x - [mm] \bruch{4}{5} [/mm] = 0

Nun würde ich im Normalfall x1+ x2 = -p so umstellen:

x2 = -4 + (- [mm] \bruch{s}{5}) [/mm]

dummerweise bringt mir das garnichts, da s nach wievor unbekannt ist.

Bleibt mir der Weg s zu suchen, und zwar indem ich x1 mal x2 = q umstelle.
Das sah dann bei mir folgendermassen aus :

[mm] \bruch{s}{5} [/mm] = - 4 mal ( - [mm] \bruch{4}{5}) [/mm]

Sound nu bekomm ich n Gehirnkrampf, egal wie ich es probiere ich komme einfach nicht drauf irgendwo mach ich einen grundlegenden Denkfehler.

Ich würde mich freuen wenn mir jemand diese Geschichte mit einfachen Worten erklären könnte.
Bin dankbar für jede Hilfe
Greets


        
Bezug
Quadratische Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:14 Mi 25.03.2009
Autor: fred97

Du benutzt den Satz von Vieta nicht in seiner vollen Aussage !  

Gegeben sei die quadratische Gleichung


[mm] $x^2 [/mm] + px + q = 0$

und deren Lösungen  [mm] x_1 [/mm] und [mm] x_2. [/mm] Vieta besagt:

(1)   $p = [mm] -(x_1 +x_2) \,$ [/mm]

(2)  $q = [mm] x_1 \cdot x_2$ [/mm]  

Wenn Du (2) nicht vewendest, kanns natürlich nichts werden !!



FRED




Bezug
                
Bezug
Quadratische Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:41 Mi 25.03.2009
Autor: Windbeutel

Danke für deine schnelle Antwort

Hm ich dachte ich beachte (2) dadurch, dass ich
x1 mal x2 = q nach s umstelle
Das sah dann bei mir folgendermassen aus :

[mm] \bruch{s}{5} [/mm] = - 4 mal (- [mm] \bruch{4}{5}) [/mm]

?

Bezug
                        
Bezug
Quadratische Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:56 Mi 25.03.2009
Autor: fred97


> Danke für deine schnelle Antwort
>  
> Hm ich dachte ich beachte (2) dadurch, dass ich
> x1 mal x2 = q nach s umstelle
>  Das sah dann bei mir folgendermassen aus :
>
> [mm]\bruch{s}{5}[/mm] = - 4 mal (- [mm]\bruch{4}{5})[/mm]
>  

In der Tat, das hatte ich oben übersehen.

x1 mal x2 = q  liefert : [mm] 4x_2 [/mm] = [mm] \bruch{-4}{5} [/mm]

FRED

> ?


Bezug
                                
Bezug
Quadratische Gleichung: richtig verstanden?
Status: (Frage) beantwortet Status 
Datum: 11:11 Mi 25.03.2009
Autor: Windbeutel

Dann bekomm ich nach x2 aufgelöst:

x2 = -   [mm] \bruch{4}{5} [/mm] : 4
=
x2 = - [mm] \bruch{20}{100} [/mm]

eingesetzt in p = - (x1+x2)

p = - ( 4 - [mm] \bruch{20}{100}) [/mm]
P = - [mm] \bruch{19}{5} [/mm]

liege ich nun richtig ?

P.s. Danke für deine Geduld

Bezug
                                        
Bezug
Quadratische Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:24 Mi 25.03.2009
Autor: fred97


> Dann bekomm ich nach x2 aufgelöst:
>  
> x2 = -   [mm]\bruch{4}{5}[/mm] : 4
> =
> x2 = - [mm]\bruch{20}{100}[/mm]

Du kannst noch kürzen: [mm] x_2 [/mm] = - [mm]\bruch{1}{5}[/mm]


>  
> eingesetzt in p = - (x1+x2)
>  
> p = - ( 4 - [mm]\bruch{20}{100})[/mm]
>  P = - [mm]\bruch{19}{5}[/mm]
>  
> liege ich nun richtig ?

Ja

FRED

>  
> P.s. Danke für deine Geduld


Bezug
                                                
Bezug
Quadratische Gleichung: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:27 Mi 25.03.2009
Autor: Windbeutel

Vielen Dank für deine Hilfe

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]