matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesQuasireguläre Hexagone
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Sonstiges" - Quasireguläre Hexagone
Quasireguläre Hexagone < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quasireguläre Hexagone: Tippsuche für isogonal
Status: (Frage) beantwortet Status 
Datum: 17:48 So 21.01.2018
Autor: Schreim

Hallo Forumleute,

Ich suche Tipps zum Thema "isogonales Hexagon in zylindrischen Koordinaten".
Für jeden Hinweis wäre ich sehr dankbar.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Danke, Schreim.

        
Bezug
Quasireguläre Hexagone: Turtle Grafik ?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:19 So 21.01.2018
Autor: Al-Chwarizmi


> Ich suche Tipps zum Thema "isogonales Hexagon in
> zylindrischen Koordinaten".


Hallo Schreim

Ich denke, dass du da wenigstens ein Stück weit
beschreiben solltest, worum es denn überhaupt
gehen soll.
Beispielsweise:  sollen das ebene Vielecke sein ?
Falls ja: würde dann nicht auch der Begriff
"Polarkoordinaten in der Ebene" genügen ?

Ich stelle mir unter einem "isogonalen Hexagon"
ein konvexes Sechseck in der Ebene vor, das sich
von einem regelmäßigen Sechseck nur dadurch
unterscheidet, dass nicht alle seine 6 Seiten gleich
lang sein müssen.
Wozu es nützlich sein sollte, ein solches Vieleck
in Polarkoordinaten darzustellen, ist mir dabei noch
nicht so ganz klar. Allerdings könnte ich mir vorstellen,
dass es in einer Programmierumgebung nützlich sein
könnte, den Zeichenvorgang eines solchen Secksecks
in der Art einer "Turtle-Graphik" durch Richtungswinkel
und Weglängen effizient zu beschreiben ...

LG ,   Al-Chwarizmi


Bezug
                
Bezug
Quasireguläre Hexagone: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:00 So 21.01.2018
Autor: Schreim

Hallo Al-Chwarizmi,

Vielen Dank für Deine Bemerkungen. Die Frage resultiert aus der Beschreibung der extremalen Fließkriterien  (Plastizitätstheorie) in der pi-Ebene und führt auf die Sechsecke mit drei Symmetrieachsen: isogonale und isotoxale Hexagone. Diese Hexagone sind in https://en.wikipedia.org/wiki/Hexagon unter "Example hexagons by symmetry" angegeben.

Für die einfache Anpassung des Kriteriums an die Messwerte ist ihre Formulierung in zylindrischen Koordinaten wichtig: es entstehen keine  störende Überschneidungen der Geraden.

Die Formulierung für die isotoxale Hexagone in zylindrischen Koordinaten als die Funktion des Spannungswinkels  ist bekannt. Die Formulierung für die isogonale Hexagone in der Form einer Funktion ohne Fallunterscheidung fehlt.

Danke,
Schreim.


Bezug
        
Bezug
Quasireguläre Hexagone: Antwort
Status: (Antwort) fertig Status 
Datum: 18:21 Mo 22.01.2018
Autor: leduart

Hallo
kannst du genauer sagen, was du suchst? ein Hexakon ist 2d Zylinderkoordinaten 3d? ausser dem stern und dem regulären Hexakon kenn ich keines?
Gruß leduart

Bezug
                
Bezug
Quasireguläre Hexagone: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:32 Mo 22.01.2018
Autor: Schreim

Hallo Leduart,

Einem regulären Dreieck ist ein reguläres Dreieck einbeschrieben. Wenn das innere Dreieck vergrößert sich, als Schnitt der Dreiecke entsteht ein Sechseck mit drei Symmetrieachsen. Ich suche für dieses Sechseck nach der Funktion r(phi).

Danke,
Schreim.

Bezug
                        
Bezug
Quasireguläre Hexagone: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:10 Mo 22.01.2018
Autor: leduart

Hallo
schreib doch mal die Beschreibung für deine isotoxalen Sechsecke auf, damit man sieht, was du meinst.
wenn ich deine beschreibung richtg verstanden habe ist das der regelmäsige 6- eckige Stern?
gruß leduart

Bezug
                                
Bezug
Quasireguläre Hexagone: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:18 Mo 22.01.2018
Autor: Schreim

Isogonales Hexagon: https://en.wikipedia.org/wiki/Hexagon unter "Example hexagons by symmetry". Die Funktion r(phi) ohne Fallunterscheidung ist gesucht. Das Problem stammt aus der Plastizitätstheorie: konvexe Sechskanten mit drei Symmetrieachsen als Fließkriterien in der deviatorischen Ebene (pi-Ebene).

Danke,
Schreim.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]