matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieQuotientenkörper
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Zahlentheorie" - Quotientenkörper
Quotientenkörper < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quotientenkörper: Umformung
Status: (Frage) beantwortet Status 
Datum: 14:55 So 11.10.2009
Autor: kleine_ente_nora

In meinem Skript steht: [mm] \IQ [/mm] ( [mm] \wurzel{n} [/mm] ) = { a+b [mm] \wurzel{n} [/mm] | a,b [mm] \in \IQ [/mm] } ist Quotientenkörper von [mm] \IZ [/mm] [ [mm] \wurzel{n} [/mm] ]. Aber ist nicht an sich [mm] \IZ [/mm] ( [mm] \wurzel{n} [/mm] ) der Quotientenkörper von [mm] \IZ [/mm] [ [mm] \wurzel{n} [/mm] ]. Die Elemente in [mm] \IZ [/mm] ( [mm] \wurzel{n} [/mm] ) haben die Form [mm] \bruch{a+b\wurzel{n}}{c+d\wurzel{n}}, [/mm] a,b,c,d [mm] \in \IZ [/mm] und die Elemente in [mm] \IQ [/mm] ( [mm] \wurzel{n} [/mm] ) haben die Form [mm] \bruch{a}{b}+\bruch{c}{d}\wurzel{n}, [/mm] a,b,c,d [mm] \in \IZ. [/mm] Kann man das irgendwie ineinander überführen und so zeigen, dass sie beide Quotientenkröper sind?

        
Bezug
Quotientenkörper: Antwort
Status: (Antwort) fertig Status 
Datum: 21:03 So 11.10.2009
Autor: felixf

Hallo Nora!

> In meinem Skript steht: [mm]\IQ[/mm] ( [mm]\wurzel{n}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

) = { a+b

> [mm]\wurzel{n}[/mm] | a,b [mm]\in \IQ[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

} ist Quotientenkörper von [mm]\IZ[/mm] [

> [mm]\wurzel{n}[/mm] ].

Ja.

> Aber ist nicht an sich [mm]\IZ[/mm] ( [mm]\wurzel{n}[/mm] ) der

Was soll das sein? Das ist nicht definiert, da [mm] $\IZ$ [/mm] kein Koerper ist.

> Quotientenkörper von [mm]\IZ[/mm] [ [mm]\wurzel{n}[/mm] ]. Die Elemente in
> [mm]\IZ[/mm] ( [mm]\wurzel{n}[/mm] ) haben die Form
> [mm]\bruch{a+b\wurzel{n}}{c+d\wurzel{n}},[/mm] a,b,c,d [mm]\in \IZ[/mm] und
> die Elemente in [mm]\IQ[/mm] ( [mm]\wurzel{n}[/mm] ) haben die Form
> [mm]\bruch{a}{b}+\bruch{c}{d}\wurzel{n},[/mm] a,b,c,d [mm]\in \IZ.[/mm] Kann
> man das irgendwie ineinander überführen und so zeigen,
> dass sie beide Quotientenkröper sind?

Nun, erweiter doch mal [mm] $\frac{a + b \sqrt{n}}{c + d \sqrt{n}}$ [/mm] mit $c - d [mm] \sqrt{n}$. [/mm]

LG Felix


Bezug
                
Bezug
Quotientenkörper: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 23:22 So 11.10.2009
Autor: kleine_ente_nora

Da kommt doch dann irgendwelches Durcheinander raus:
[mm] \bruch{a+b\wurzel{n}}{c+d\wurzel{n}}*\bruch{c-d\wurzel{n}}{c-d\wurzel{n}}=\bruch{ac-ad\wurzel{n}+cb\wurzel{n}-nbd}{c^{2}-nd^{2}}. [/mm]
Meintest du das so? Das brngt mir doch aber gar nichts, oder?

Bezug
                        
Bezug
Quotientenkörper: Antwort
Status: (Antwort) fertig Status 
Datum: 23:35 So 11.10.2009
Autor: felixf

Hallo!

> Da kommt doch dann irgendwelches Durcheinander raus:
>  
> [mm]\bruch{a+b\wurzel{n}}{c+d\wurzel{n}}*\bruch{c-d\wurzel{n}}{c-d\wurzel{n}}=\bruch{ac-ad\wurzel{n}+cb\wurzel{n}-nbd}{c^{2}-nd^{2}}.[/mm]
>  Meintest du das so? Das brngt mir doch aber gar nichts,
> oder?

Na, fassen wir das doch mal zusammen. Unten steht [mm] $c^2 [/mm] - n [mm] d^2$; [/mm] dies ist nicht 0 (warum?) und eine ganze Zahl, sagen wir $z$.

Oben steht $(a c - n d b) + (c b - a d) [mm] \sqrt{n}$. [/mm] Das ist von der Form $x + y [mm] \sqrt{n}$ [/mm] mit $x, y [mm] \in \IZ$. [/mm]

Insgesamt hast du also [mm] $\frac{x}{z} [/mm] + [mm] \frac{y}{z} \sqrt{n} \in \IQ[\sqrt{n}]$. [/mm]

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]