matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperQuotientenring
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - Quotientenring
Quotientenring < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quotientenring: Maximale Ideale
Status: (Frage) beantwortet Status 
Datum: 14:58 So 25.05.2014
Autor: stuart

Aufgabe
Bestimmen Sie die maximale Ideale in
[mm] \IR[X]/(X^{2}-3X+2) [/mm]

Joa meine Frage ist wie ich das mache. Mir fehlt da einiges, ich habe leider nicht mal einen Ansatz. Ich wäre euch für einen Anfang unglaublich dankbar.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Quotientenring: Antwort
Status: (Antwort) fertig Status 
Datum: 17:33 So 25.05.2014
Autor: hippias

Kennst Du irgendein maximales Ideal des Ringes? Weisst Du, dass der Ring ein Hauptidealring ist?

Bezug
                
Bezug
Quotientenring: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:18 So 25.05.2014
Autor: stuart

Ich weiß leider kein maximales Ideal.
Aber das der Ring ein Hauptideal ist, ist mir bewusst.

Bezug
                        
Bezug
Quotientenring: Antwort
Status: (Antwort) fertig Status 
Datum: 08:18 Mo 26.05.2014
Autor: hippias

Du benoetigst noch folgende Saetze - und ich bin mir sicher, dies wurde in deiner Vorlesung abgehandelt: Sei $R:= K[t]$ ein Polynomring ueber den Koerper $K$ und [mm] $f\in [/mm] R$.  
1. $fR$ ist genau dann maximal, wenn $f$ irreduzibel in $R$ ist.
2. Sei [mm] $\pi:R\to [/mm] R/fR$ mit [mm] $x\mapsto [/mm] x+fR$ der kanonische Epimorphismus. Fuer ein Ideal $I$ von $R/fR$ gilt: $I$ ist maximales Ideal von $R/fR$ genau dann, wenn [mm] $\pi^{-1}(I)$ [/mm] ein maximales Ideal von $R$ ist.

Mache dir nun klar, dass $I$ genau dann ein maximales Ideal von [mm] $R/(x^{2}-3x+2)R$ [/mm] ist, wenn $I= [mm] \phi R/(x^{2}-3x+2)R$ [/mm] ist, wobei [mm] $\phi$ [/mm] ein irreduzibler Teiler von $f$ ist. Damit sind naemlich die maximalen Ideale durch die Primteiler von [mm] $x^{2}-3x+2$ [/mm] festgelegt.

Bezug
                                
Bezug
Quotientenring: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:22 Do 11.09.2014
Autor: stuart

Guten Abend,
ich lerne momentan fuer meine Klausur, da bin ich nochmal ueber die Aufgabe gestolpert.
Ist das maximale Ideal?
I = { [mm] (x-1)+x^2-3x+2, (x-2)+x^2-3x+2, [/mm] 0 }

Wie sieht es mit
2. [mm] \IR[X]/(X^{2}-2X+1) [/mm]
und
3. [mm] \IR[X]/(X^{2}+X+1) [/mm]
aus?

Hab da jetzt eine Vermutung weiss aber nicht ob es stimmt.
2. I = { [mm] (x-1)^2 [/mm] , 0 }

3. I = { 0 }

Vielen Dank fuer eure Hilfe.

Bezug
                                        
Bezug
Quotientenring: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Sa 13.09.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]