matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieQuotiententopologie
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Topologie und Geometrie" - Quotiententopologie
Quotiententopologie < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quotiententopologie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:35 Mi 10.11.2010
Autor: physicus

Hallo Forum!

Ich habe eine Frage zur Quotiententopologie. Dazu braucht man ja den Begriff der Quotientenabbildung, den wir wie folgt eingeführt haben:

Sei [mm] X,Y [/mm] topologische Räume, [mm] q: X \to Y [/mm] eine surjektive Abbildung. q heisst Quotiententopologie falls:

[mm] V \subset Y [/mm] ist genau dann offen, wenn [mm] q^{-1}(V) [/mm] offen in X ist.

Dann kann man die Quotiententopologie wie folgt definieren:

Sei $\ X$ ein topologischer Raum ($\ [mm] \mathcal{T}_X$ [/mm] die Topologie auf X)  , Y eine Menge, [mm] q: X \to Y [/mm] surjektiv. Dann gibt es genau eine Topologie auf Y, für welche $\ q$ eine Quotientenabbildung ist.

Klarerweise definiert man diese so:

[mm] \mathcal{T}_Y = \{W \subset Y | q^{-1}(W) \in \mathcal{T}_X \} [/mm].

Das dies eine Topologie definiert kann ich beweisen. Offensichtlich ist dies auch die einzige, so wie sie definiert ist. Aber, dass q bzgl. dieser Topologie eine Quotientenabbildung ist, sehe ich nicht, obwohl es trivial sein sollte. Es sollte ja gelten:

[mm] U \subset Y, U \in \mathcal{T}_Y \gdw q^{-1}(U) \in \mathcal{T}_X [/mm]. Die Richtung "$\ [mm] \Rightarrow$" [/mm] ist ja gerade die Definition. Irgendwie sehe ich die Richtung "$\ [mm] \Leftarrow$" [/mm] nicht. Also wen ich eine offene Menge in X habe, dass diese das Bild unter q dann auch offen in Y ist. Ich danke für Erklärungen!

greetz

        
Bezug
Quotiententopologie: Antwort
Status: (Antwort) fertig Status 
Datum: 22:03 Sa 13.11.2010
Autor: mathfunnel


> Hallo Forum!
>  
> Ich habe eine Frage zur Quotiententopologie. Dazu braucht
> man ja den Begriff der Quotientenabbildung, den wir wie
> folgt eingeführt haben:
>  
> Sei [mm]X,Y[/mm] topologische Räume, [mm]q: X \to Y[/mm] eine surjektive
> Abbildung. q heisst Quotiententopologie falls:

q heisst Quotientenabbildung falls:

>  
> [mm]V \subset Y[/mm] ist genau dann offen, wenn [mm]q^{-1}(V)[/mm] offen in X
> ist.
>
> Dann kann man die Quotiententopologie wie folgt
> definieren:
>  
> Sei [mm]\ X[/mm] ein topologischer Raum ([mm]\ \mathcal{T}_X[/mm] die
> Topologie auf X)  , Y eine Menge, [mm]q: X \to Y[/mm] surjektiv.
> Dann gibt es genau eine Topologie auf Y, für welche [mm]\ q[/mm]
> eine Quotientenabbildung ist.
>
> Klarerweise definiert man diese so:
>  
> [mm]\mathcal{T}_Y = \{W \subset Y | q^{-1}(W) \in \mathcal{T}_X \} [/mm].
>  
> Das dies eine Topologie definiert kann ich beweisen.
> Offensichtlich ist dies auch die einzige, so wie sie
> definiert ist. Aber, dass q bzgl. dieser Topologie eine
> Quotientenabbildung ist, sehe ich nicht, obwohl es trivial
> sein sollte.

Es ist auch trivial!

>  Es sollte ja gelten:
> [mm]U \subset Y, U \in \mathcal{T}_Y \gdw q^{-1}(U) \in \mathcal{T}_X [/mm].
> Die Richtung "[mm]\ \Rightarrow[/mm]" ist ja gerade die Definition.

Nein, sondern eine surjektive Abbildung [mm] $q:X\rightarrow [/mm] Y$, wobei $X,Y$ die Topologien [mm] $\mathcal{A}$ [/mm] bzw. [mm] $\mathcal{B}$ [/mm] tragen, heißt Quotientenabbildung, falls:

[mm] $\forall [/mm] U (U [mm] \in \mathcal{B} \leftrightarrow q^{-1}(U) \in \mathcal{A} \wedge U \subset Y)$ . > Irgendwie sehe ich die Richtung "[/mm] [mm]\ \Leftarrow[/mm]" nicht. Also

> wen ich eine offene Menge in X habe, dass diese das Bild
> unter q dann auch offen in Y ist. Ich danke für
> Erklärungen!
>  
> greetz

Du versuchst die Offenheit von $q$ zu beweisen. Das ist aber nicht nötig und nicht möglich.

LG mathfunnel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]