matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikRadius: Millikan Versuch
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Physik" - Radius: Millikan Versuch
Radius: Millikan Versuch < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Radius: Millikan Versuch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:35 Di 30.11.2010
Autor: esra2

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,
ich bin in der 12.Klasse eines Gymnasiums und habe eine Frage zum Millikan-Versuch.

also die Reibungskraft kann ja mit dem Stokesschen Gesetz bestimmt werden F=6*pie*viskosität*v und wenn man dies mit der gewichtskaft gleichsetzt, dann muss man die beiden formeln nach dem radius auflösen. Ich hab zwar die lösung, r=wurzel4,5*viskosität*v/2*dichte von öl*g , jedoch komm ich nicht zu diesem ergebnis wenn ich die gewichtskraft mit der reibungskraft gleichsetze. Könnte mir vielleicht jemand bei der Umformung helfen?


Ich bedanke mich im Voraus!

        
Bezug
Radius: Millikan Versuch: Antwort
Status: (Antwort) fertig Status 
Datum: 00:49 Mi 01.12.2010
Autor: notinX

Hi,

> Hallo,
>  ich bin in der 12.Klasse eines Gymnasiums und habe eine
> Frage zum Millikan-Versuch.

bei diesem Versuch muss man unterscheiden, ob man vom schwebenden oder vom sinkenden Teilchen ausgeht (alternativ gibt es auch noch die Gleichfeld-Methode).
Deiner Frage nach gehe ich aber vom sinkenden Teilchen aus, da sonst keine Reibung auftreten würde.

>  
> also die Reibungskraft kann ja mit dem Stokesschen Gesetz
> bestimmt werden F=6*pie*viskosität*v und wenn man dies mit
> der gewichtskaft gleichsetzt, dann muss man die beiden
> formeln nach dem radius auflösen. Ich hab zwar die

Du hast noch die Auftriebskraft vergessen (Luft ist nicht masselos!). Die Gleichung lautet damit:
[mm] $F_g=F_R+F_A$ [/mm]

> lösung, r=wurzel4,5*viskosität*v/2*dichte von öl*g ,

Versuchs doch mal mit dem Formeleditor, damit wird das ganze leserlicher. Davon abgesehen stimmt die Lösung nicht.

> jedoch komm ich nicht zu diesem ergebnis wenn ich die
> gewichtskraft mit der reibungskraft gleichsetze. Könnte
> mir vielleicht jemand bei der Umformung helfen?

Also schreiben wir die Gleichung erstmal hin:
[mm] $\frac{4}{3}\pi r^{3}\varrho_{Oel}g-6\pi\eta rv-\frac{4}{3}\pi r^{3}\varrho_{Luft}g=0$ [/mm]
jetzt kannst Du ein r ausklammern und die Lösung r=0 ausschließen, da der Radius sicher größer 0 ist.
Dann kannst Du den übrigen Term der Reibungskraft auf die rechte Seite bringen und auf der linken Seite nochmal r (bzw. [mm] $r^2$) [/mm] ausklammern.
Dann musst Du nur noch durch das ausgeklammerte teilen und die Wurzel ziehen und fertig.

Versuchs mal.

Gruß,

notinX

Bezug
                
Bezug
Radius: Millikan Versuch: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 21:15 Mi 01.12.2010
Autor: esra2

wenn ich die stokessche reibungskraft auf die andere seite bringe, dann müsste sich doch links davon alles gegenseitig auflösen, sodass r=0 ist, oder?

Bezug
                        
Bezug
Radius: Millikan Versuch: Antwort
Status: (Antwort) fertig Status 
Datum: 22:11 Mi 01.12.2010
Autor: leduart

Hallo
in der Gewichtskraft [mm] V*\rho*g [/mm] steckt doch [mm] r^3 [/mm]
wenn du also die Gl. durch r dividierst, bleibt [mm] r^2 [/mm] über. danach löst du auf und ziehst am ende die Wurzel
Gruss leduart


Bezug
        
Bezug
Radius: Millikan Versuch: Antwort
Status: (Antwort) fertig Status 
Datum: 01:21 Mi 01.12.2010
Autor: leduart

Hallo
in deiner Reibungskraft fehlt ein r.
und auch das Ergebnis stimmt nicht. kannst du die formeln noch mal überprüfen?
In der Schule lässt man allerdings die Auftriebskraft weg. sie spielt gegenüber den andren bei den möglichen Meßfehlern keine rolle.
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]