matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenRandwertaufgabe/ Green Fkt.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Partielle Differentialgleichungen" - Randwertaufgabe/ Green Fkt.
Randwertaufgabe/ Green Fkt. < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Randwertaufgabe/ Green Fkt.: Volumenpotenzial
Status: (Frage) überfällig Status 
Datum: 16:39 Fr 03.01.2014
Autor: mikexx

Aufgabe
Gegeben sei die Dirichlet-Randwertaufgabe für die Poisson-Gleichung

(1)     [mm] $-\Delta [/mm] u=f$     in [mm] $\Omega:=B_R(0):=\left\{x\in\mathbb{R}^3: \lVert x\rVert < R\right\}$ [/mm]

(2)     $u=0$     auf [mm] $S_R(0):=\left\{x\in\mathbb{R}^3: \lVert x\rVert=R\right\}$ [/mm]

mit [mm] $f\in L^{\infty}(\Omega)\cap C^{0,\lambda}(\Omega)$ [/mm] und [mm] $0<\lambda<1$. [/mm]

(a)   Geben Sie die Lösung [mm] $u\in C^{2,\lambda}(\Omega)\cap C(\overline{\Omega})$ [/mm] der Aufgabe (1), (2) mit Hilfe der Green'schen Funktion an.

(b)   Geben Sie $u(0)$ für den Fall [mm] $f(x)=f(\lVert x\rVert)$ [/mm] an.

(c)   Bringen Sie $u(x)$ für [mm] $\lVert x\rVert [/mm] > 0$ in eine Form, die sich mit dem Volumenpotenzial schreiben lässt.




Hallo und Euch allen ein frohes, gesundes und erfolgreiches neues Jahr!

Zu den beiden ersten Teilaufgaben (a) und (b) habe ich Ideen.

[mm] \textbf{Zu (a)} [/mm] habe ich einen Satz aus unserer Vorlesung benutzt; dieser besagt, dass die Lösung gegeben ist durch

[mm] $u(x)=\int_{\Omega}G(x,y)f(y)\, [/mm] dy$,

wobei $G$ hier die Green'sche Funktion der Kugel bezeichne.

Daraus erhalte ich

[mm] $u(x)=\frac{1}{4\pi}\left(\int_{\Omega}\frac{f(y)}{\lVert x-y\rVert}\, dy-\int_{\Omega}\frac{f(y)}{\left\lVert\frac{\lVert y\rVert}{R}x-\frac{R}{\lVert y\rVert}y\right\rVert}\, dy\right)$. [/mm]

[mm] \textbf{Zu (b)} [/mm] habe ich Kugelkoordinaten benützt. Ich erhalte

[mm] $u(0)=\int_0^R [/mm] f(r) [mm] r\, dr-\frac{1}{R}\int_0^R [/mm] f(r) [mm] r^2\, [/mm] dr$.


[mm] \textbf{Zu (c)} [/mm] habe ich bislang keine wirkliche Idee gehabt; wir haben das Volumenpotenzial wie folgt definiert:


Sei [mm] $E_n$ [/mm] die Grundlösung der Laplace-Gleichung in [mm] $\mathbb{R}^n$, [/mm] also

[mm] $\forall~x\in\mathbb{R}^n\setminus\left\{0\right\}: E_n(x):=\begin{cases}\frac{1}{2\pi}\ln(\frac{1}{\lVert x\rVert}), & n=2\\\frac{1}{(n-2)\sigma_n}\frac{1}{\lVert x\rVert^{n-2}}, & n>2\end{cases}$. [/mm]

Sei [mm] $\Omega\subset\mathbb{R}^n$ [/mm] ein beschränktes Gebiet und sei [mm] $f\in L^{\infty}(\Omega)$. [/mm] Dann heißt die Funktion

[mm] $U_n(x):=\int_{\Omega}E_n(x-y)f(y)\, [/mm] dy$ für [mm] $x\in\mathbb{R}^n$ [/mm]

Volumenpotential mit Dichte $f$.


Damit erhalte ich für die Darstellung der Lösung aus Aufgabenteil (a), dass

[mm] $u(x)=U_3(x)-\frac{1}{4\pi}\int_{\Omega}\frac{f(y)}{\left\lVert\frac{\lVert y\rVert}{R}x-\frac{R}{\lVert y\rVert}y\right\rVert}\, dy\right$. [/mm]

Kann ich das hier noch auftretende Integral auch irgendwie mittels [mm] $U_3$ [/mm] ausdrücken?

Ist Aufgabenteil (c) so gemeint oder gar ganz anders?


Viele Grüße!

Mike

        
Bezug
Randwertaufgabe/ Green Fkt.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 So 05.01.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]