matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete MathematikRechenregeln für Gruppen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Diskrete Mathematik" - Rechenregeln für Gruppen
Rechenregeln für Gruppen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rechenregeln für Gruppen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:26 Sa 19.01.2008
Autor: jboss

Aufgabe
Es sei $(G, [mm] \circ)$ [/mm] eine Gruppe und $a, b [mm] \in [/mm] G$ seien beliebig. Beweisen Sie die folgende Rechenregel:

$(a [mm] \circ b)^{-1} [/mm] = [mm] b^{-1} \circ a^{-1}$ [/mm]

Hallo zusammen,

ich verzweifle gerade an obiger Aufgabe. Habe keinen Ansatz für den Beweis. Ich kenne die Eigenschaften, die eine Menge mitsamt einer Verknüpfung erfüllen muss um eine Gruppe darzustellen. Jedoch komme ich nicht darauf, wie sich diese Rechenregel ohne Kommutativität beweisen lässt. Kommutativität ist ja nicht gegeben, da die Gruppe nicht abelsch ist.

Würde mich über einen Gedankenanstoß sehr freuen.

lg jboss

        
Bezug
Rechenregeln für Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:42 Sa 19.01.2008
Autor: Somebody


> Es sei [mm](G, \circ)[/mm] eine Gruppe und [mm]a, b \in G[/mm] seien
> beliebig. Beweisen Sie die folgende Rechenregel:
>  
> [mm](a \circ b)^{-1} = b^{-1} \circ a^{-1}[/mm]
>  Hallo zusammen,
>  
> ich verzweifle gerade an obiger Aufgabe. Habe keinen Ansatz
> für den Beweis. Ich kenne die Eigenschaften, die eine Menge
> mitsamt einer Verknüpfung erfüllen muss um eine Gruppe
> darzustellen. Jedoch komme ich nicht darauf, wie sich diese
> Rechenregel ohne Kommutativität beweisen lässt.
> Kommutativität ist ja nicht gegeben, da die Gruppe nicht
> abelsch ist.
>  
> Würde mich über einen Gedankenanstoß sehr freuen.

Um zu zeigen, dass $(a [mm] \circ b)^{-1} [/mm] = [mm] b^{-1} \circ a^{-1}$ [/mm] gilt, musst Du einfach zeigen, dass [mm] $b^{-1} \circ a^{-1}$ [/mm] die (eindeutig bestimmte) Inverse von [mm] $a\circ [/mm] b$ ist. Das heisst, Du musst nur zeigen, dass gilt:

[mm](a\circ b)\circ (b^{-1}\circ a^{-1})=e[/mm]

wobei $e$ das neutrale Element der Gruppe sei. - Und wie beweist man dies? - Indem man die Assoziativität von $e$ und die Eigenschaften [mm] $b\circ b^{-1}=e$, $a\circ [/mm] e=a$ sowie [mm] $a\circ a^{-1}=e$ [/mm] verwendet.

Bezug
                
Bezug
Rechenregeln für Gruppen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:58 Sa 19.01.2008
Autor: jboss

Jetzt hat s "Klick" gemacht! Vielen Dank für die ungeheuer schnelle Antwort :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]