matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Rechtwinklige Dreiecke
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mathe Klassen 8-10" - Rechtwinklige Dreiecke
Rechtwinklige Dreiecke < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rechtwinklige Dreiecke: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:25 Do 27.05.2010
Autor: Cosmic3000

Aufgabe
Der Fluss wird mit einem Bott überquert. Das Wasser fliesst mit 15Km/h, das Boot erreicht eine Geschwindigkeit von 25Km/h (relativ zum Wasser): Mit welchem Winkel muss das Boot stromaufwärts gesteuert werden, damit es genau am gegenüberliegendem Ufer ankommt? Welche tatsächliche Geschwindigkeit erreicht das Boot? Spielt die Breite des Flusses eine Rolle?  

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Wie geht das ?
(Bei Bedarf kann ich die Zeichnung beifügen

        
Bezug
Rechtwinklige Dreiecke: Antwort
Status: (Antwort) fertig Status 
Datum: 22:34 Do 27.05.2010
Autor: abakus


> Der Fluss wird mit einem Bott überquert. Das Wasser
> fliesst mit 15Km/h, das Boot erreicht eine Geschwindigkeit
> von 25Km/h (relativ zum Wasser): Mit welchem Winkel muss
> das Boot stromaufwärts gesteuert werden, damit es genau am
> gegenüberliegendem Ufer ankommt? Welche tatsächliche
> Geschwindigkeit erreicht das Boot? Spielt die Breite des
> Flusses eine Rolle?
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Wie geht das ?
> (Bei Bedarf kann ich die Zeichnung beifügen

Mach ich mal lieber selber. Rot ist gesucht.
[Dateianhang nicht öffentlich]
Gruß Abakus


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
Rechtwinklige Dreiecke: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:43 Sa 29.05.2010
Autor: Cosmic3000

Hat keiner eine Idee ?

Bezug
                        
Bezug
Rechtwinklige Dreiecke: Antwort
Status: (Antwort) fertig Status 
Datum: 14:43 Sa 29.05.2010
Autor: abakus


> Hat keiner eine Idee ?  

Fühlst du dich nicht in der Lage, in einem gegebenen RECHTWINKLIGEN Dreieck mit der Hypotenusenlänge 25 und einer Kathetenlänge 15 einen Winkel auszurechnen, der der gegebenen Kathetenlänge GEGENüberliegt?


Bezug
                                
Bezug
Rechtwinklige Dreiecke: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:36 Sa 29.05.2010
Autor: Cosmic3000

ist die hypothenusenlänge wirklich 25 ? da sie ja in der relation zum wasser eigtl nur 20 wäre... oder?

Bezug
                                        
Bezug
Rechtwinklige Dreiecke: Antwort
Status: (Antwort) fertig Status 
Datum: 19:39 Sa 29.05.2010
Autor: Paul94

Hi!

Als Hypothenuse wird die längste Seite eines rechtwinkligen Dreiecks bezeichnet. Sie liegt immer gegenüber des rechten Winkels.
Die Seite am gesuchten Winkel ist die Ankathete, die Seite gegenüber des gesuchten Winkels ist die Gegenkathete. Jetzt überleg mal wie Sinu, Cosinus und Tagens definiert sind und ob dir einer davon vielleicht helfen könnte.

Paul

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]