matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunkyPlot HilfeReihen plotten?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "FunkyPlot Hilfe" - Reihen plotten?
Reihen plotten? < Hilfe < FunkyPlot < Mathe-Software < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "FunkyPlot Hilfe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihen plotten?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:21 Mo 19.11.2007
Autor: BenRen

Hallo,

kann mir jemand sagen, ob es möglich ist, Reihen mit Funkyplot zu plotten? Ich würde z.B. gerne die Werte der Reihe

[mm] \summe_{k=2}^{\infty}(-\bruch{4}{5})^{k} [/mm]

darstellen.

Vielen Dank für Eure Hilfe!

        
Bezug
Reihen plotten?: Umweg
Status: (Antwort) fertig Status 
Datum: 13:36 Di 20.11.2007
Autor: Loddar

Hallo BenRen!


Direkt als Reihendarstellung wirst Du das wohl nicht erzeugen können mit FunkyPlot. Aber Su kannst hier etwas tricksen, indem Du folgende Funktion eingibst:

[mm] $$\red{f(x) \ :=} [/mm] \ [mm] \summe_{k=2}^{x}\left(-\bruch{4}{5}\right)^k [/mm] \ = \ [mm] \summe_{k=0}^{x}\left(-\bruch{4}{5}\right)^k-\left(-\bruch{4}{5}\right)^0-\left(-\bruch{4}{5}\right)^1 [/mm] \ = \ [mm] \summe_{k=0}^{x}\left(-\bruch{4}{5}\right)^k-1+\bruch{4}{5} [/mm] \ = \ [mm] -\bruch{1}{5}+\summe_{k=0}^{x}\left(-\bruch{4}{5}\right)^k [/mm] \ = \ [mm] -\bruch{1}{5}+\bruch{1-\left(-\bruch{4}{5}\right)^x}{1-\left(-\bruch{4}{5}\right)} [/mm] \ = \ [mm] -\bruch{1}{5}+\bruch{1-\left(-\bruch{4}{5}\right)^x}{1+\bruch{4}{5}} [/mm] \ = \ [mm] \red{-\bruch{1}{5}+\bruch{5}{9}*\left[1-\left(-\bruch{4}{5}\right)^x \ \right]}$$ [/mm]

Gruß
Loddar


Bezug
                
Bezug
Reihen plotten?: doch nicht ...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:40 Di 20.11.2007
Autor: Loddar

Hallo RenBen!


Hm, schade ... das klappt wohl doch nicht, wegen der negativen Basis der Exponentialfunktion.


Gruß
Loddar


Bezug
                        
Bezug
Reihen plotten?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:15 Mi 21.11.2007
Autor: BenRen

Hallo,

vielen Dank für Deine Antwort. Also nehme ich mal an, dass FunkyPlot keine Summen-Funktion hat? Aber es gibt die Funktion sum(...), ich kann z.B.

f(x) = sum(x)

eingeben. Was macht denn das sum(...)? Ich kann in der Doku dazu nichts finden.


Von der Uni aus habe ich auch Zugriff auf eine Mathematica Version - ist es damit möglich, solche Summen bzw. Reihen zu plotten?

Bezug
                                
Bezug
Reihen plotten?: Antwort
Status: (Antwort) fertig Status 
Datum: 12:06 Mi 21.11.2007
Autor: Martin243

Hallo,

> Von der Uni aus habe ich auch Zugriff auf eine Mathematica Version - ist es damit möglich, solche Summen bzw. Reihen zu plotten?

Natürlich! Das und noch viel mehr...
Du könntest mal die folgende Eingabe ausprobieren:
ListPlot[ {#, Sum[(-4/5)^k, {k, 2, #}]} & /@ Range[2, 100] ];

Zur Bedeutung:
{#, Sum[(-4/5)^k, {k, 2, #}]} & ist eine Funktion, die ein Argument-Funktionswert-Paar berechnet. Hier sind # der Platzhalter für das Funktionsargument und & ein Symbol für eine Funktion.
/@ wendet eine vorhergehende Funktion auf eine ganze Liste an.
Range[2,100] erzeugt einfach die Liste {2,3,4, ..., 99, 100}, da wir natürlich nicht bis [mm] $\infty$ [/mm] plotten können. Mit der oberen Grenze kannst du ja herumspielen.


Gruß
Martin

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "FunkyPlot Hilfe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]