matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenRekursiv definierte Folge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Rekursiv definierte Folge
Rekursiv definierte Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rekursiv definierte Folge: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:20 Fr 11.05.2007
Autor: shatun

Aufgabe
      Gutten tag! Ich habe ein Problem und bitte um Hilfe.

     Es sei [mm] x_0>-1. [/mm] Man definiere rekursiv die Folge [mm] (x_n) [/mm] reeller Zahlen durch [mm] x_n=1/(1+x_{n+1}) [/mm] und beweise, dass diese Folge konvergiert. Was ist der Grenzwert?

     Ich glaube, ich muss den Banachschen Fixpunktsatz benutzen, aber wie genau weiss ich nicht...

     Danke voraus.

     Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Rekursiv definierte Folge: (allgemeine) Hinweise
Status: (Antwort) fertig Status 
Datum: 14:57 Fr 11.05.2007
Autor: Roadrunner

Hallo shatun,

[willkommenmr] !!


Bist Du sicher bei der dargestellten Rekursionsvorschrift, was die Indizes angeht? [aeh]


Ansonsten kannst Du die Eigenschaft der Konvergenz zeigen, indem Du sowohl Monotonie als auch die Beschränktheit der Folge nachweist.

Für beide Eigenschaften bietet sich die vollständige Induktion an.


Gruß vom
Roadrunner


Bezug
                
Bezug
Rekursiv definierte Folge: Korrektur
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:28 Fr 11.05.2007
Autor: shatun

Sorry! Die Folge definiert so: [mm] x_n=1/(1+x_{n-1}). [/mm]

Bezug
                        
Bezug
Rekursiv definierte Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:14 Fr 11.05.2007
Autor: shatun

Ich komme nicht weiter. Die Folge mit den richtigen Indizes soll ich auch mit den Nachweiss von Monotonie und Beschränktheit bearbeiten?
Danke voraus.

Bezug
                                
Bezug
Rekursiv definierte Folge: Genau!
Status: (Antwort) fertig Status 
Datum: 23:03 Fr 11.05.2007
Autor: Roadrunner

Hallo shatun!


> Die Folge mit den richtigen Indizes soll ich auch mit den Nachweis
> von Monotonie und Beschränktheit bearbeiten?

[daumenhoch] Genau!


Gruß vom
Roadrunner


Bezug
                                        
Bezug
Rekursiv definierte Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:06 Mi 16.05.2007
Autor: shatun

Eigentlich, musste man sagen, dass für belibiege [mm] x_1 [/mm] schon [mm] x_3 [/mm] zwischen 0,5 und 1 liegt, und einfach Banachsche Fixpunktsatz benutzen. :)))

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]