matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenRiccatische Dlg.
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - Riccatische Dlg.
Riccatische Dlg. < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Riccatische Dlg.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:12 So 24.04.2011
Autor: diddy449

Aufgabe
$$ [mm] y'(x)+h(x)y^2(x)+ [/mm] g(x)y(x)=k(x)$$ ist mit f,g,h als stetigen Fkt. auf dem Intervall I die Riccatische Dlg.
Sei weiterhin [mm] \phi [/mm] eine Lsg. der Riccatischen Dlg. und
$$ [mm] y'(x)+h(x)y^2(x)+ [/mm] g(x)y(x)=k(x), [mm] y(x_0)=y_0\not=\phi(x_0)$$ [/mm]
ein AWP.

Zeigen Sie, dass das AWP auf einem geeignet kleinen Intervall höchstens eine Lsg. hat.

Hey,
ich hab hier eine Problem bei dieser Aufgabe.

Ich weiß, dass jede Lsg von der Form [mm] $y=\phi-u$ [/mm] ist, wobei u die Bernoullische Dgl mit dem AWP [mm] $$u'(x)+[g(x)+2\phi(x)h(x)]u(x)+h(x)u^2(x)=0, u(x_0)=y_0-\phi(x_0)$$ [/mm] eindeutig löst.

Doch komm ich jetzt nicht weiter. Wie zeige ich denn nun, dass egal wie ich [mm] $\phi$ [/mm] wähle immer die gleiche Lsg $y$ rauskommt?

Gruß Diddy


        
Bezug
Riccatische Dlg.: Antwort
Status: (Antwort) fertig Status 
Datum: 20:10 So 24.04.2011
Autor: MathePower

Hallo diddy449,

> [mm]y'(x)+h(x)y^2(x)+ g(x)y(x)=k(x)[/mm] ist mit f,g,h als stetigen
> Fkt. auf dem Intervall I die Riccatische Dlg.
>  Sei weiterhin [mm]\phi[/mm] eine Lsg. der Riccatischen Dlg. und
> [mm]y'(x)+h(x)y^2(x)+ g(x)y(x)=k(x), y(x_0)=y_0\not=\phi(x_0)[/mm]
>  
> ein AWP.
>  
> Zeigen Sie, dass das AWP auf einem geeignet kleinen
> Intervall höchstens eine Lsg. hat.
>  Hey,
>  ich hab hier eine Problem bei dieser Aufgabe.
>  
> Ich weiß, dass jede Lsg von der Form [mm]$y=\phi-u$[/mm] ist, wobei
> u die Bernoullische Dgl mit dem AWP
> [mm]u'(x)+[g(x)+2\phi(x)h(x)]u(x)+h(x)u^2(x)=0, u(x_0)=y_0-\phi(x_0)[/mm]
> eindeutig löst.
>
> Doch komm ich jetzt nicht weiter. Wie zeige ich denn nun,
> dass egal wie ich [mm]\phi[/mm] wähle immer die gleiche Lsg [mm]y[/mm]
> rauskommt?


[mm]\phi[/mm] kannst Du nicht wählen, da [mm]\phi[/mm]
eine  Lösung der Riccatischen DGL ist.



>  
> Gruß Diddy

>


Gruss
MathePower    

Bezug
                
Bezug
Riccatische Dlg.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:50 So 24.04.2011
Autor: diddy449

Hey,

> [mm]\phi[/mm] kannst Du nicht wählen, da [mm]\phi[/mm]
>  eine  Lösung der Riccatischen DGL ist.

Ok, aber [mm] $\phi$ [/mm] kann eine beliebige Lsg der Riccatischen DGl sein.
Sagen wir ich habe vorher zufällig zwei unterschiedliche Lösungen der Riccatischen Dgl bestimmt, undzwar [mm] $\phi_1$ [/mm] und [mm] $\phi_2$. [/mm]

Wieso muss dann folgendes für alle Lsg y des AWP gelten?
[mm] $y=\phi_1-u_{\phi_1}=\phi_2-u_{\phi_2}$ [/mm]

Also warum ist die Lsg y unabhängig von konkreten [mm] $\phi$ [/mm] bzw. wie kann ich zeigen dass die Lsg des AWP y eindeutig ist?

Gruß Diddy


Bezug
                        
Bezug
Riccatische Dlg.: Antwort
Status: (Antwort) fertig Status 
Datum: 15:05 Mo 25.04.2011
Autor: MathePower

Hallo diddy449,

>  Hey,
>  
> > [mm]\phi[/mm] kannst Du nicht wählen, da [mm]\phi[/mm]
>  >  eine  Lösung der Riccatischen DGL ist.
>  
> Ok, aber [mm]\phi[/mm] kann eine beliebige Lsg der Riccatischen DGl
> sein.
>  Sagen wir ich habe vorher zufällig zwei unterschiedliche
> Lösungen der Riccatischen Dgl bestimmt, undzwar [mm]\phi_1[/mm] und
> [mm]\phi_2[/mm].
>  
> Wieso muss dann folgendes für alle Lsg y des AWP gelten?
>  [mm]y=\phi_1-u_{\phi_1}=\phi_2-u_{\phi_2}[/mm]
>  


Nun, dann hast Du 3 Lösungen: [mm]y, \ \phi_{1}, \ \phi_{2}[/mm]

Die Differenz von je zwei dieser Lösungen genügt nun wieder
einer Bernoullischen DGL.


> Also warum ist die Lsg y unabhängig von konkreten [mm]\phi[/mm]
> bzw. wie kann ich zeigen dass die Lsg des AWP y eindeutig
> ist?
>  
> Gruß Diddy
>


Gruss
MathePower  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]