matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeterminantenRichtungsableitung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Determinanten" - Richtungsableitung
Richtungsableitung < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Richtungsableitung: Lösung
Status: (Frage) beantwortet Status 
Datum: 21:24 Di 17.05.2011
Autor: Matrix22

Aufgabe
Bestimmen Sie die Richtungableitung der Funktion

[mm] f:{(x,y)€r^2| x^2+y^2<1}--> [/mm] R
  (x,y)--> [mm] \wurzel{1-x^2-y^2} [/mm]
im Punkt ( 0.5; 0.707) in Richtung des Vektors ( 0,707; 0,707).
0,707 ist 1 durch Wurzel 2.
Für welche Punkte des Definitionsbereichs ist die Richtung des steilsten Anstiegs parallel zur y-Richtung?

Hallo diese Aufgabenstellung verwirrt mich wie beginne ich hier?
Ich mus ja ersteinmal die Ableitung machen aber wo von?

[mm] f:{(x,y)€r^2| x^2+y^2<1}--> [/mm] R
  (x,y)--> [mm] \wurzel{1-x^2-y^2} [/mm]
Kann mir jemand erklären was das bedeutet?

        
Bezug
Richtungsableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:26 Di 17.05.2011
Autor: schachuzipus

Hallo Matrix,


> Bestimmen Sie die Richtungableitung der Funktion

Bitte! Mengenklammern gehen mit vorangehendem Backslash

\{

und \}

für [mm]\{[/mm] und [mm]\}[/mm]

>  
> [mm]f:\{(x,y)\in\IR^2: x^2+y^2<1\}\to\IR \ \leftarrow \ \text{klick!}[/mm]
>    [mm](x,y)\mapsto[/mm] [mm]\wurzel{1-x^2-y^2}[/mm]
> im Punkt ( 0.5; 0.707) in Richtung des Vektors ( 0,707;
> 0,707).
> 0,707 ist 1 durch Wurzel 2.

Dann lass es stehen!

Schaue in deiner Mitschrift oder auf wikipedia nach, wie die Richtungsableitung definiert ist!

Die Richtungsableitung in Richtung [mm]\vec{v}=(1/\sqrt{2},1/\sqrt{2})[/mm] (Einheitsvektor!!) im Punkt [mm]\vec{x}=(1/2,1/\sqrt{2})[/mm] berechnet sich als

[mm]D_{\vec{v}}(\vec{x})=\lim\limits_{h\to 0}\frac{f(\vec{x}+h\cdot{}\vec{v})-f(\vec{x})}{h}[/mm]

Setze alles ein (mit den Wurzeln), rechne ein bissl rum, vereinfache weitestgehend und lasse dann [mm] $h\to [/mm] 0$ gehen.

>  Für welche Punkte des Definitionsbereichs ist die
> Richtung des steilsten Anstiegs parallel zur y-Richtung?
>  Hallo diese Aufgabenstellung verwirrt mich wie beginne ich
> hier?
>  Ich mus ja ersteinmal die Ableitung machen aber wo von?
>  
> [mm]f:{(x,y)€r^2| x^2+y^2<1}-->[/mm] R
>    (x,y)--> [mm]\wurzel{1-x^2-y^2}[/mm]

> Kann mir jemand erklären was das bedeutet?

Siehe oben.

Wieso präsentierst du nicht mal die Definition von "Richtungsableitung", so wie ihr sie in der VL kennengelernt habt?

Ohne Definitionen läuft nix!


Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]