matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungRotationskörper
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - Rotationskörper
Rotationskörper < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rotationskörper: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 12:37 Sa 10.01.2009
Autor: Schachschorsch56

Aufgabe
Ein drehsymmetrisches Staubecken hat eine Parabel mit der Gleichung [mm] y=ax^2 [/mm] als Berandung des Querschnitts. Beim Wasserstand 5m hat die Wasseroberfläche einen Durchmesser von 20m.
a) Welche Gleichung hat die Parabel ?
b) Wie groß ist die Wassermenge, die das Becken beim höchsten Wasserstand 8m fasst ?

zu a) hatte ich folgendes berechnet:

[mm] f(x)=ax^2 [/mm] und  [mm] P_1[10;5] [/mm]  und [mm] P_2[-10;5] [/mm]  ergeben nach Einsetzen

[mm] 5=a*10^2 [/mm] damit [mm] a=\bruch{1}{20} [/mm] und

[mm] f(x)=\bruch{1}{20}x^2 [/mm] (=Gleichung der Parabel)

zu b) hatte ich dann die Umkehrfunktion berechnet und die Fläche zwischen den Intervallpunkten [0;8] um die x-Achse rotieren lassen.

Die Gleichung der Umkehrfunktion  [mm] f^{-1}(x)=\wurzel{20x} [/mm] setzte ich in folgendes Integral ein:

[mm] V_{Rotationskoerper}=\pi\integral_{0}^{8}{(\wurzel{20x})^2 dx} [/mm] und erhielt als Ergebnis: 160 [mm] \pi [/mm]

In diesem Forum bin ich nun auf eine ähnliche Aufgabe gestoßen, nur, dass die Fläche um die y-Achse rotierte:

[mm] (f(x)=\bruch{1}{3}x-2 \wedge [/mm] y=c=1 [mm] \wedge [/mm] y=d=3, dazu die Lösungsformel [mm] V=\pi\integral_{c}^{d}{(\overline {f}(y))^2 dy}. [/mm]

Kann ich diese Formel für meine Aufgabe nicht auch so schreiben:

[mm] V_{Rotationskoerper}=\pi\integral_{c}^{d}{(f^{-1}(x))^2 dx} [/mm] = [mm] pi\integral_{0}^{8}{(\wurzel{20x})^2 dx} [/mm] ?

( Die Intervallgrenzen wären ja dann x=c=0  [mm] \wedge [/mm] x=d=8)

Ist dann [mm] f^{-1}(x) [/mm] = [mm] \overline{f}(y) [/mm] ? Ist ja praktisch auch eine Rotation um die y-Achse, das Volumen und die Körperform bleiben ja gleich !

Schorsch

Ich habe diese Frage in keinem anderen Internetforum gestellt.

        
Bezug
Rotationskörper: Antwort
Status: (Antwort) fertig Status 
Datum: 12:50 Sa 10.01.2009
Autor: leduart

Hallo
Deine Umkehrfkt ist falsch.
[mm] y=\bruch{1}{20}*x^2 [/mm]
daraus [mm] x=\wurzel{20*y} [/mm]
also [mm] f°{-1}=\wurzel{20*y} [/mm]
[mm] f=\wurzel{20} [/mm] ist doch einfach ne Parallele zur x-Achse.
Deine Rechnung ist sonst von den Formeln her richtig.
Wenn du direkt um die y- Achse drehen willst
hast du [mm] \pi*\integral_{a}^{b}{x^2 dy} [/mm] darin kannst du [mm] x^2 [/mm] durch 20y ersetzen. Dann kommt schliesslich dasselbe raus !
Gruss leduart

Bezug
                
Bezug
Rotationskörper: Rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:05 Sa 10.01.2009
Autor: Schachschorsch56

OK, bei der Umkehrfunktion habe ich natürlich das x vergessen.
Aber Deinen letzten Satz verstehe ich nicht !

Für [mm] x^2 [/mm] soll ich 20y einsetzen ?

Schorsch



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]