matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungRotationskörper um y-Achse
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Rotationskörper um y-Achse
Rotationskörper um y-Achse < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rotationskörper um y-Achse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:09 Mo 13.11.2017
Autor: hase-hh

Aufgabe
Gesucht ist das Volumen des Rotationskörpers.

a) Rotation um die x-Achse

f(x) = [mm] \bruch{1}{2}*x^2 [/mm]   im Intervall [1;4]

b) Die Umkehrfunktion soll nun um die y-Achse rotieren.


zu a)  Rotationskörper um x-Achse...

V = [mm] \pi*\integral_{1}^{4}{f(x)^2 dx} [/mm]

V = [mm] \pi*\integral_{1}^{4}{(\bruch{1}{2}x^2)^2 dx} [/mm]


V = [mm] \pi*\integral_{1}^{4}{\bruch{1}{4}x^4 dx} [/mm]

[mm] \pi*[\bruch{1}{20}*x^5] [/mm]

[mm] \pi*(\bruch{1}{2}*4^5 [/mm] - [mm] \bruch{1}{20}*1^5) [/mm] = [mm] \bruch{1023}{20}\pi [/mm]


richtig?


zu b)

Wenn ich die Umkehrfunktion um die y-Achse rotieren lasse, warum kommt dann (hier) nicht dasselbe Rotationsvolumen heraus???

Mache ich etwas falsch?

Danke für eure Hilfe!


f(x) = [mm] \bruch{1}{2}*x^2 [/mm]

y = [mm] \bruch{1}{2}*x^2 [/mm]  | *2


2y = [mm] x^2 [/mm]  | [mm] \wurzel{} [/mm]

[mm] \wurzel{2y} [/mm] = x   <=>  [mm] f^{-1} [/mm] = [mm] \wurzel{2y} [/mm]


Ansatz

V = [mm] \pi*\integral_{f(1)}^{f(4)}{(f^{-1})^2 dy} [/mm]


V = [mm] \pi*\integral_{0,5}^{8}{(\wurzel{2y})^2 dy} [/mm]

V = [mm] \pi*\integral_{0,5}^{8}{2y dy} [/mm]

[mm] \pi*[y^2] [/mm]   = [mm] \pi*[8^2 -0,5^2] [/mm] = [mm] \bruch{255}{4}*\pi [/mm]


???












        
Bezug
Rotationskörper um y-Achse: Antwort
Status: (Antwort) fertig Status 
Datum: 23:38 Mo 13.11.2017
Autor: leduart

Hallo
erste Rechnung richtig.
1. Umkehrfunktion ist y= [mm] \sqrt(2x) [/mm]
Rotation um die [mm] y-Achse:\pi*\int x^2 [/mm] dy
nun dy=f'(x)*dx  mit [mm] f'(x)=2/\sqrt(2x) [/mm]
also [mm] \int x^2 dy=\int x^2 *2/\sqrt(2x) [/mm] nun sieh dir die Grenzen am besten auf der Zeichnung an, Gruß leduart

Bezug
                
Bezug
Rotationskörper um y-Achse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:08 Di 14.11.2017
Autor: hase-hh

Äh, welche Zeichnung?

Bezug
                        
Bezug
Rotationskörper um y-Achse: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:46 Di 14.11.2017
Autor: angela.h.b.


> Äh, welche Zeichnung?

leduart meint sicher die Skizze, welche Du selbstverständlich angefertigt hast.

LG Angela


Bezug
                
Bezug
Rotationskörper um y-Achse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:57 Di 14.11.2017
Autor: hase-hh


> Hallo
>  erste Rechnung richtig.
>  1. Umkehrfunktion ist y= [mm]\sqrt(2x)[/mm]
>  Rotation um die [mm]y-Achse:\pi*\int x^2[/mm] dy
>  nun dy=f'(x)*dx  mit [mm]f'(x)=2/\sqrt(2x)[/mm]

also f ' (x) = [mm] 2*\bruch{1}{\wurzel{2x}} [/mm]  ok...

>  also [mm]\int x^2 dy=\int x^2 *2/\sqrt(2x)[/mm]

Wie kommst du auf [mm] x^2 [/mm]  ???

nun sieh dir die

> Grenzen am besten auf der Zeichnung an, Gruß leduart




Bezug
                        
Bezug
Rotationskörper um y-Achse: Antwort
Status: (Antwort) fertig Status 
Datum: 08:07 Di 14.11.2017
Autor: angela.h.b.


> > Hallo
>  >  erste Rechnung richtig.
>  >  1. Umkehrfunktion ist y= [mm]\sqrt(2x)[/mm]

Diese Funktion, [mm] g(x)=\wurzel{2x} [/mm] soll nun um die y-Achse rotieren.

[mm] V=\integral_{...}^{...}(g^{-1}(y))^2 [/mm] dy

leduart substituiert nun [mm] x=g^{-1}(y) [/mm]


>  >  Rotation um die [mm]y-Achse:\pi*\int x^2[/mm] dy
>  >  nun dy=f'(x)*dx  mit [mm]f'(x)=2/\sqrt(2x)[/mm]
>  
> also f ' (x) = [mm]2*\bruch{1}{\wurzel{2x}}[/mm]  ok...
>  
> >  also [mm]\int x^2 dy=\int x^2 *2/\sqrt(2x)[/mm]

>
> Wie kommst du auf [mm]x^2[/mm]  ???

Durch die Substitution [mm] x=g^{-1}(y). [/mm]
[mm] y=g(x)=\wurzel{2x} [/mm]
dy= ...

LG Angela

>  
> nun sieh dir die
> > Grenzen am besten auf der Zeichnung an, Gruß leduart
>
>
>  


Bezug
        
Bezug
Rotationskörper um y-Achse: Antwort
Status: (Antwort) fertig Status 
Datum: 07:44 Di 14.11.2017
Autor: angela.h.b.


> Gesucht ist das Volumen des Rotationskörpers.
>  
> a) Rotation um die x-Achse
>  
> f(x) = [mm]\bruch{1}{2}*x^2[/mm]   im Intervall [1;4]
>  
> b) Die Umkehrfunktion soll nun um die y-Achse rotieren.
>  
> zu a)  Rotationskörper um x-Achse...
>  
> V = [mm]\pi*\integral_{1}^{4}{f(x)^2 dx}[/mm]
> [...
> [mm]\bruch{1023}{20}\pi[/mm]
>  
>
> richtig?
>  
>
> zu b)
>
> Wenn ich die Umkehrfunktion um die y-Achse rotieren lasse,
> warum kommt dann (hier) nicht dasselbe Rotationsvolumen
> heraus???

Es sollte in der Tat dasselbe herauskommen.

>  
> Mache ich etwas falsch?
>  
> Danke für eure Hilfe!
>  
>
> f(x) = [mm]\bruch{1}{2}*x^2[/mm]
>  
> y = [mm]\bruch{1}{2}*x^2[/mm]  | *2
>  
>
> 2y = [mm]x^2[/mm]  | [mm]\wurzel{}[/mm]
>  
> [mm]\wurzel{2y}[/mm] = x   <=>  [mm]f^{-1}[/mm] = [mm]\wurzel{2y}[/mm]

Okay, die Umkehrfunktion g von f ist gefunden,
es [mm] g(x)=\wurzel{2x}, x\in [/mm] [f(1),f(4)]= [0.5,8]

Die Funktion g soll nun um die y-Achse rotieren, also ist zu berechnen

V = [mm]\pi*\integral_{g(0.5)}^{g(8)}{(g^{-1}(y)^2 dy}[/mm],

und so sollte es dann auch klappen.


Dein Fehler war, daß Du nicht die Umkehrfunktion von f um die y-Achse rotieren ließest, sondern die Funktion f selbst.

LG Angela

>  
>
> Ansatz
>  
> V = [mm]\pi*\integral_{f(1)}^{f(4)}{(f^{-1})^2 dy}[/mm]
>  
>
> V = [mm]\pi*\integral_{0,5}^{8}{(\wurzel{2y})^2 dy}[/mm]
>  
> V = [mm]\pi*\integral_{0,5}^{8}{2y dy}[/mm]
>  
> [mm]\pi*[y^2][/mm]   = [mm]\pi*[8^2 -0,5^2][/mm] = [mm]\bruch{255}{4}*\pi[/mm]
>  
>
> ???
>  
>
>
>
>
>
>
>
>
>
>  


Bezug
                
Bezug
Rotationskörper um y-Achse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:00 Di 14.11.2017
Autor: hase-hh

Moin,

d.h. ich bilde die Umkehrfunktion (Aufgabenstellung), und weil ich diese dann um die y-Achse rotiere, bilde ich dazu wiederum die Umkehrfunktion!?





Bezug
                        
Bezug
Rotationskörper um y-Achse: Antwort
Status: (Antwort) fertig Status 
Datum: 11:13 Di 14.11.2017
Autor: angela.h.b.


> Moin,
>  
> d.h. ich bilde die Umkehrfunktion (Aufgabenstellung), und
> weil ich diese dann um die y-Achse rotiere, bilde ich dazu
> wiederum die Umkehrfunktion!?

Ja,genau!

LG Angela

>  
>
>
>  


Bezug
        
Bezug
Rotationskörper um y-Achse: Antwort
Status: (Antwort) fertig Status 
Datum: 11:58 Di 14.11.2017
Autor: HJKweseleit


> Gesucht ist das Volumen des Rotationskörpers.
>  
> a) Rotation um die x-Achse
>  
> f(x) = [mm]\bruch{1}{2}*x^2[/mm]   im Intervall [1;4]
>  
> b) Die Umkehrfunktion soll nun um die y-Achse rotieren.
>  
> zu a)  Rotationskörper um x-Achse...
>  
> V = [mm]\pi*\integral_{1}^{4}{f(x)^2 dx}[/mm]
>  
> V = [mm]\pi*\integral_{1}^{4}{(\bruch{1}{2}x^2)^2 dx}[/mm]
>  
>
> V = [mm]\pi*\integral_{1}^{4}{\bruch{1}{4}x^4 dx}[/mm]
>  
> [mm]\pi*[\bruch{1}{20}*x^5][/mm]
>
> [mm]\pi*(\bruch{1}{2}*4^5[/mm] - [mm]\bruch{1}{20}*1^5)[/mm] =
> [mm]\bruch{1023}{20}\pi[/mm]
>  
>
> richtig?
>  
>
> zu b)
>
> Wenn ich die Umkehrfunktion um die y-Achse rotieren lasse,
> warum kommt dann (hier) nicht dasselbe Rotationsvolumen
> heraus???
>  
> Mache ich etwas falsch?
>  
> Danke für eure Hilfe!
>  
>
> f(x) = [mm]\bruch{1}{2}*x^2[/mm]
>  
> y = [mm]\bruch{1}{2}*x^2[/mm]  | *2
>  
>
> 2y = [mm]x^2[/mm]  | [mm]\wurzel{}[/mm]
>  
> [mm]\wurzel{2y}[/mm] = x   <=>  [mm]f^{-1}[/mm] = [mm]\wurzel{2y}[/mm]

>  
>



Wenn wir mal mit x und y (statt mit f) arbeiten, hattest du zu Beginn y = [mm] \bruch{1}{2}x^2 [/mm] und nach deiner Umformung
[mm] x=\wurzel{2y}. [/mm]

Das ist aber noch keine Umkehrfunktion, sondern nur eine Umstellung der Ausgangsfunktion nach x!!!

Die Umkehrfunktion ergib sich nun daraus, dass du (vor oder nach der Umstellung) die Variablen x und y gegeneinander austauscht:
[mm] y=\wurzel{2x} [/mm]

Die lässt du nun um die y-Achse rotieren, und dazu musst du in der Formel für den Rotationskörper auch überall x und y vertauschen:


Statt V = [mm]\pi*\integral_{x_1}^{x_2}{y^2 dx}[/mm] nun  V = [mm]\pi*\integral_{y_1}^{y_2}{x^2 dy}[/mm] = ...(mit [mm] y=\wurzel{2x}, [/mm] NICHT [mm] x=\wurzel{2y}) [/mm] ...= [mm]\pi*\integral_{1}^{4}{\bruch{1}{4}y^4 dy}[/mm]

Und da steht nun das selbe Integral wie oben, nur mit dem Buchstaben y statt x, und deshalb kommt auch das selbe heraus. Und das ganz ohne Substitution...




> Ansatz
>  
> V = [mm]\pi*\integral_{f(1)}^{f(4)}{(f^{-1})^2 dy}[/mm]
>  
>
> V = [mm]\pi*\integral_{0,5}^{8}{(\wurzel{2y})^2 dy}[/mm]
>  
> V = [mm]\pi*\integral_{0,5}^{8}{2y dy}[/mm]
>  
> [mm]\pi*[y^2][/mm]   = [mm]\pi*[8^2 -0,5^2][/mm] = [mm]\bruch{255}{4}*\pi[/mm]
>  
>
> ???
>  
>
>
>
>
>
>
>
>
>
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]