matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisSchittfläche zweier Parabeln
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Schittfläche zweier Parabeln
Schittfläche zweier Parabeln < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schittfläche zweier Parabeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:41 Do 13.05.2004
Autor: ramon8

Hi, meine Aufgabe für's Mathereferat:

f1(x)=x² und f2(x)=-x²+6 die zwei Parabeln schließen eine Fläche ein.
In diese Fläche wird ein Rechteck gelegt, so dass die Rechteckseiten parallel zu den Achsen des Koordinatensystems verlaufen. Welche Koordinaten müssen die Eckpunkte des Rechtecks haben, damit der Flächeninhalt des Rechtecks möglichst groß wird?

Ich hab's probiert grafisch am CAD zu lösen (siehe Lösungsvorschlag) aber wie kann ich's mathematisch beweisen ob es stimmt oder nicht??

(Mein Lösungsvorschlag P1(-1/1) P2(1/1) P3(5/1) P4(-1/5) --> Fläche wäre dann 2x4=8)

DANKE für eure Hilfe


ramon8

        
Bezug
Schittfläche zweier Parabeln: Antwort
Status: (Antwort) fertig Status 
Datum: 22:45 Do 13.05.2004
Autor: AT-Colt

Wenn Du Cad benutzt hast, müsstest Du ja gesehen haben, dass die
beiden Parabeln zu zwei Spiegelachsen symmetrisch sind, einmal zur
y-Achse, einmal zur Achse [mm] f(x) = 3[/mm]für alle [mm]x \in \IR[/mm].
Damit kann man das Problem sehr vereinfachen auf das Intervall [mm][0,\wurzel{3}][/mm].
[mm] \wurzel{3} [/mm] kann man leicht als eine Schnittstelle der Parabeln ausmachen.

Damit ist nurnoch zu lösen, wann [mm]x * (3 - f1(x))[/mm], also der Flächeninhalt
des Rechtecks, das von einem Punkt auf der Parabel mit den Symmetrieachsen
erzeugt wird, maximal ist.

Dann musst Du noch x und -x in beide Gleichungen einsetzen, um die
Koordinaten der entgültigen Punkte des Rechtecks zu bekommen.

Ich hoffe, ich habe Dich nicht mehr verwirrt, als geholfen zu haben ^^

greetz

AT-Colt

Bezug
                
Bezug
Schittfläche zweier Parabeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:06 Do 13.05.2004
Autor: ramon8

Hi Du, danke schon mal für die schnelle Antwort.

... aber ich blick noch nicht ganz durch. Also die Schnittpunkte der Parabeln hab ich auch so rausbekommen. Daraus ergibt sich dann die von Dir genannte Spiegelachse. Aber wie beweise ich das an den von mir genannen Punkten wirklich die maximale Fläche ist?
Wenn ich in deine Formel einsetze A=x . (3-f1(x)) ergibt sich die maximale Fläche bei einem x Wert von 1, oder?

Wie kommst du auf die Formel?

Danke Gruss ramon

Bezug
                        
Bezug
Schittfläche zweier Parabeln: Antwort
Status: (Antwort) fertig Status 
Datum: 03:28 Fr 14.05.2004
Autor: Marc

Hallo ramon8 und AT-Colt,

willkommen ihr beide im MatheRaum :-):-)!

> ... aber ich blick noch nicht ganz durch. Also die
> Schnittpunkte der Parabeln hab ich auch so rausbekommen.
> Daraus ergibt sich dann die von Dir genannte Spiegelachse.
> Aber wie beweise ich das an den von mir genannen Punkten
> wirklich die maximale Fläche ist?

Nochmal zur Klarstellung, es dir aber vielleicht klar: Es kommt nicht auf die Symmetrie der Parabeln zueinander an, sondern auf die daraus resultierende Symmetrie des Rechtecks. Es zerfällt bei jeder Wahl der Eckpunkte auf den Parabeln durch die x-Achse und die Gerade y=3 in vier gleich große Teile, weswegen es ausreichend ist, nur ein viertel des Rechtecks zu betrachten.

>  Wenn ich in deine Formel einsetze A=x . (3-f1(x)) ergibt
> sich die maximale Fläche bei einem x Wert von 1, oder?  
>
> Wie kommst du auf die Formel?

Zur Veranschaulichung habe ich mal eine Grafik mit []FunkyPlot angefertigt:

[Dateianhang nicht öffentlich]

Jetzt stelle dir vor, die senkrechte orange Linie würde man zwischen den x-Werten $x=0$ und [mm] $x=\wurzel{3}$ [/mm] verschieben. Für jede solche Wahl ergibt sich ein Rechteck, in der Skizze oben türkis gekennzeichnet.

Für den Flächeninhalt gilt, wenn die senkrechte Linie an der Position $x$ steht:

Breite des Rechtecks: $x$
Höhe Rechtecks: [mm] $3-f_1(x)=3-x^2$ [/mm]

Der Fächeninhalt beträgt also: [mm] $A(x)=x*(3-x^2)$ [/mm] (siehe AT-Colts Lösung).

Nun zu deiner wahrscheinlich eigentlichen Frage.

Für den Flächeninhalt $A(x)$ suchen wir ja denjenigen Wert für $x$, so dass $A(x)$ maximal ist. Dafür sind die Mittel der Differenzialrechnung wie geschaffen.

a) 1. Ableitung bilden und gleich Null setzen.
b) 2. Ableitung bilden und Nullstellen der 1. Ableitung einsetzen
c) Ergibt sich bei b) ein Wert kleiner Null, so haben wir ein Maximum gefunden.

Also:

a) [mm] $A'(x)=3-3x^2$ [/mm]
[mm] $A'(x)\stackrel{!}{=}0$ [/mm]
[mm] $\gdw 3-3x^2=0$ [/mm]
[mm] $\gdw 3=3x^2$ [/mm]
[mm] $\gdw 1=x^2$ [/mm]
[mm] $\gdw x_1=1\ \vee\ x_2=-1$ [/mm]

Nun ist die zweite Lösung für unser Rechteck nicht relevant; interessant ist nur die Lösung $x=1$

b) $A''(x)=-6x$
$A''(1)=-6$

c) Bei b) ergab sich ein Wert kleiner Null, also ist an der Stelle $x=1$ das Rechteck am grössten!

Die vier Punkte, die das maximale Rechteck ergeben, lauten also:

[mm] $P_1=(1|f_1(1))=(1|1)$ [/mm]
[mm] $P_2=(1|f_2(1))=(1|5)$ [/mm]
[mm] $P_3=(-1|f_1(-1))=(-1|1)$ [/mm]
[mm] $P_4=(-1|f_2(-1))=(-1|5)$ [/mm]

Bei Fragen weißt du ja, wo du uns findest :-)

Alles Gute,
Marc

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]