matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenSchlussfolgerung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Vektoren" - Schlussfolgerung
Schlussfolgerung < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schlussfolgerung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:51 Do 12.10.2006
Autor: wiczynski777

Aufgabe
Was folgt aus
[mm] \vec{a}*\vec{c}=\vec{b}*\vec{c} [/mm]
für die Vektoren [mm] \vec{a} [/mm] und [mm] \vec{b} [/mm]
In der Lösung stehet "Es folgt nur, dass die Komponente von [mm] \vec{a} [/mm] und [mm] \vec{b} [/mm] in Richtung von [mm] \vec{c} [/mm] gleich sein müssen."

Kann mir mal jemand erklären warum nur die Komponente in Richtung [mm] \vec{c}. [/mm] Ich verstehe es nicht so richtig

        
Bezug
Schlussfolgerung: Antwort
Status: (Antwort) fertig Status 
Datum: 01:01 Fr 13.10.2006
Autor: leduart

Hallo Wiczynski
> Was folgt aus
> [mm]\vec{a}*\vec{c}=\vec{b}*\vec{c}[/mm]
>  für die Vektoren [mm]\vec{a}[/mm] und [mm]\vec{b}[/mm]
>  In der Lösung stehet "Es folgt nur, dass die Komponente
> von [mm]\vec{a}[/mm] und [mm]\vec{b}[/mm] in Richtung von [mm]\vec{c}[/mm] gleich sein
> müssen."

Was ist denn [mm] \vec{a}*\vec{c} [/mm] für dich? es gibt die Komponente von ain Richtung [mm] \vec{c} [/mm] mal Betrag von [mm] \vec{c}. [/mm] oder [mm] c*(a*cos\phi [/mm] ) mit [mm] \phi [/mm] winkel zw. [mm] \vec{c} [/mm] und [mm] \vec{a} [/mm] . Wenn dus aufzeichnes, siehst du dass [mm] (a*cos\phi [/mm] ) die Komponente von a in c Richtung ist.
Reicht die Erklärung? sonst nimm als [mm] \vec{c} [/mm] erst mal den Einheitsvektor in x- Richtung, dann siehst dus direkt.
Gruss leduart

Bezug
                
Bezug
Schlussfolgerung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 07:28 Fr 13.10.2006
Autor: wiczynski777

Ja aber wie muss ich die Vektoren denn zeichnen. Ich muss erlich sagen das Aufzeichnen bereitet mir im moment noch die größten Probleme vor allem wenn keine Koordinaten gegeben sind. Wenn ich [mm] \vec{a} [/mm] mal [mm] \vec{c} [/mm] Skalar multipliziere krieg ich ja einen Skalar und bei b*c genau so dann müsste ich im Ergebnis einen Punkt zeichnen. Hilfe...

Bezug
                        
Bezug
Schlussfolgerung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:13 Fr 13.10.2006
Autor: Event_Horizon

Naja, zeichne dir einfach erstmal zwei Vektoren, die vom gleichen Punkt weglaufen.

Von der Spitze des einen Vektors [mm] \vec{a} [/mm] zeichnest du eine Grade, die senkrecht auf dem anderen Vektor [mm] \vec{c} [/mm] steht.

Das ist die Projektion des Vektors [mm] \vec{a} [/mm] auf den Vektor [mm] \vec{c}. [/mm] Das heißt, das gibt dir an, wie weit der [mm] \vec{a} [/mm] in Richtung [mm] \vec{c} [/mm] läuft.

Wenn du nun einen neuen vektor [mm] \vec{s} [/mm] zeichnest, der auch im gleichen Punkt wie die anderen beginnt, und bis zu diesem Schnittpunkt läuft, so gilt:

[mm] $\vec{s}=\bruch{\vec{a}*\vec{c}}{|\vec{c}|}*\bruch{\vec{c}}{|\vec{c}|}$ [/mm]

Der rechte Bruch liefert nur einen Einheitsvektor in Richtung c, und der linke, naja, das ist das, was oben schon geschrieben wurde, nämlich

[mm] $\bruch{|\vec{a}|*|\vec{c}|*\cos \phi}{|\vec{c}|}=|\vec{a}|*\cos \phi$ [/mm]



also insgesamt

[mm] $\vec{s}=|\vec{a}|*\cos \phi*\bruch{\vec{c}}{|\vec{c}|}$ [/mm]


Statt mit [mm] \vec{a} [/mm] machst du das gleiche nochmal mit [mm] \vec{b}. [/mm] In beiden Fällen soll ja das gleiche rauskommen, das heißt dann eben auch, daß

[mm] $|\vec{a}|*\cos \phi*\bruch{\vec{c}}{|\vec{c}|}=|\vec{b}|*\cos \phi*\bruch{\vec{c}}{|\vec{c}|}$ [/mm]

also, daß die beiden Projektionen gleich sind.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]