matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreSchnitt von Mengen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mengenlehre" - Schnitt von Mengen
Schnitt von Mengen < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnitt von Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:54 Sa 20.10.2007
Autor: Elfe

Aufgabe
a) Sei I eine beliebige Indexmenge und zu jedem i [mm] \in [/mm] I sei eine Menge [mm] M_{i} [/mm] gegeben. Es gelte [mm] \bigcap_{i \in I}^{} M_{i} [/mm] = [mm] \emptyset [/mm] . Gibt es dann stets zwei Mengen [mm] M_{i}, M_{j}, [/mm] (i,j [mm] \in [/mm] I), mit [mm] M_{i} \cap M_{j} [/mm] = [mm] \emptyset [/mm] ? (Beweis oder Gegenbeispiel).

b) Man ermittle ein Beispiel für eine Folge [mm] (M_{n})_{n \in \IN_{0}} [/mm] nicht leerer Teilmengen von [mm] \IN [/mm] mit den Eigenschaften:
(i) [mm] M_{n+1} \subset M_{n} [/mm] für alle n [mm] \in \IN_{0} [/mm] und
(ii) [mm] \bigcap_{n \in \IN_{0}}^{} M_{n} [/mm] = [mm] \emptyset. [/mm]  

Hallo an alle,

ich hab ein paar Fragen zu den beiden Aufgaben! Also zu a) erstmal.
Ich würde schon sagen, dass es dann immer zwei Mengen geben muss, deren Durchschnitt gleich der leeren Menge ist. Das ist jetzt nur meine Meinung, ich lasse mich natürlich auch vom Gegenteil beweisen. Laut meiner Annahme heißt das ja, ich müsste das beweisen. Aber wie mache ich das? Durch vollständige Induktion würde ich das jetzt nicht machen unbedingt.

und bei b)... ich kann mir nicht so recht vorstellen, was für Mengen es gibt, wo die Menge [mm] M_{n+1} [/mm] eine echte Teilmenge der Menge [mm] M_{n} [/mm] ist. Also mir fällt kein Beispiel ein. Gibt es da ein ganz einfaches? Irgendwie ein einfaches Zahlenbeispiel oder so?

Würde mich wirklich über Hilfe freuen!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

lg Elfe

        
Bezug
Schnitt von Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:22 Sa 20.10.2007
Autor: luis52

Moin Elfe,


zunaechst erst einmal ein herzliches [willkommenmr]



a) Setze [mm] $I=\IN$ [/mm] und [mm] $M_i=\{x\mid x\in\IR\,, 0
b) Setze [mm] $M_n=\{x\mid x\in \IN, (n+1)! \mbox{ ist Teiler von } x\}$. [/mm]

lg
Luis          

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]