matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenSchnittkurve
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Schnittkurve
Schnittkurve < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittkurve: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:38 Sa 26.01.2013
Autor: Fabian

Aufgabe
Gegeben seien die beiden räumlichen Flächen [mm] F_1 [/mm] und [mm] F_2 [/mm] durch

[mm]F_{1}:=\left \{(x,y,z):x^2+y^2+z^2=5 \right \}[/mm], [mm]F_{1}:=\left \{(x,y,z): z=1/2*x^2+1/2*y^2-1 \right \}[/mm]

Mit C wird die Schnittkurve dieser beiden Flächen bezeichnet.

Bestimmen Sie eine Parameterdarstellung der Schnittkurve C.


Hallo alle zusammen,

ich steh bei dieser Aufgabe leider auf dem Schlauch! In den Lösungshinweisen steht, dass ich eine Projektion der Schnittkurve in die xy-Ebene machen soll: [mm]x^2+y^2=4[/mm]

Die Kurve C soll dann sein: [mm]C: \overrightarrow{x}(t)=\vektor{2cos(t) \\ 2sin(t) \\ 1}[/mm]


Ich brauch bei der Aufgabe mal einen kleinen Hinweis, wie ich vorgehen und warum ich die Schnittkurve in die xy-Ebene projezieren muss.

Vielen Dank!

Gruß Fabian

        
Bezug
Schnittkurve: Antwort
Status: (Antwort) fertig Status 
Datum: 12:49 Sa 26.01.2013
Autor: Richie1401

Hallo Fabian,


> [mm]F_{1}:=\left \{(x,y,z):x^2+y^2+z^2=5 \right \}[/mm],
> [mm]F_{2}:=\left \{(x,y,z): z=1/2*x^2+1/2*y^2-1 \right \}[/mm]

Wir multiplizieren [mm] z=1/2x^2+1/2y^2-1 [/mm] mit dem Faktor 2 und addieren dann 2 und erhalten

[mm] 2z+2=x^2+y^2 [/mm]    (*)

Wir setzen (*) in [mm] F_1 [/mm] ein:
[mm] 2z+2+z^2=5, [/mm] also erhalten wir [mm] 0=z^2+2z-3 [/mm]   (**)

Was sind die Lösungen von (**)?
Setze die Lösungen dann in (*) ein. Sind beide Lösungen überhaupt möglich? Oder muss man eine Lösung streichen, weil sie unmöglich ist?

Beachte weiterhin: [mm] x^2+y^2=r^2 [/mm] beschreibt einen Kreis vom Radius r.

Beste Grüße!

Bezug
                
Bezug
Schnittkurve: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:55 Mi 30.01.2013
Autor: Fabian

Hallo Richie,

hab ganz vergessen mich zu bedanken. Also vielen Dank für die Antwort. Super Erklärung!

Viele Grüße

Fabian

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]