matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisSchnittpunkte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Schul-Analysis" - Schnittpunkte
Schnittpunkte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittpunkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:15 Di 08.06.2004
Autor: oli711

tach zusammen,

hab grad ein kleines Problem.
Folgende Aufgabenstellung.

Bestimmen Sie die Schnittpunkte von f(x) = e^(x-1) und g(x)= a e^(-x) in Abhängigkeit von a. irgendwie komm ich nicht weiter ich hab mal so angefangen:

1. e^(x-1) = a e^(-x)

2. ln x - 1 = a ln-x |+1

3. ln x = a ln -x +1

und da merk ich schon das was nicht simmt. rauskommen muss:

x = 0,5 (1+lna)

wäre super nett, könnt mir jemand den lösungsweg beschreiben.

greetz und nen schönen tag.

        
Bezug
Schnittpunkte: Antwort
Status: (Antwort) fertig Status 
Datum: 13:25 Di 08.06.2004
Autor: Julius

Hallo Oli!

> tach zusammen,
>
> hab grad ein kleines Problem.
> Folgende Aufgabenstellung.
>
> Bestimmen Sie die Schnittpunkte von f(x) = e^(x-1) und
> g(x)= a e^(-x) in Abhängigkeit von a. irgendwie komm ich
> nicht weiter ich hab mal so angefangen:
>
> 1. e^(x-1) = a e^(-x)

[ok]

> 2. ln x - 1 = a ln-x |+1

[notok]

Du willst auf beiden Seiten den natürlichen Algorithmus anwenden. Aber es gilt ja:

[mm] $\ln(e^{x-1}) [/mm] = x-1$

und nicht:

[mm] $\ln(e^{x-1}) [/mm] = [mm] \ln(x-1)$. [/mm]

Ich rechne es dir jetzt mal vor:

[mm]e^{x-1} = a \, e^{-x} \qquad \green{\vert\, \cdot e^x}[/mm]

[mm]\Leftrightarrow e^x \cdot e^{x-1} = a[/mm]

[mm]\Leftrightarrow e^{2x-1} = a[/mm].

Nun musst du eine Fallunterscheidung machen:

Im Falle $a [mm] \le [/mm] 0$ hat diese Gleichung keine Lösung.

Im Falle $a>0$ hast sie eine Lösung, die wir durch Logarithmieren beider Seiten erhalten.

Zunächst folgt:

$2x-1 = [mm] \ln(a)$, [/mm]

und dann die von dir genannte Lösung:

$a = [mm] \frac{1}{2}\cdot (1+\ln [/mm] (a))$.

Liebe Grüße
Julius

Bezug
                
Bezug
Schnittpunkte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:32 Di 08.06.2004
Autor: oli711

Hi Julius,

vielen dank für deine Antwort. Super und noch so schnell.
so einfach kanns manchmal sein, wenn man weiß wie. :)

spitze und nochmals danke

oli

Bezug
        
Bezug
Schnittpunkte: Crossposting: Schnittpunkte
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:08 Di 08.06.2004
Autor: Marcel

Hallo Oli711,
bitte lies dir noch einmal unseren Standpunkt zu Crosspostings durch.

Hier der Link zu deinem Crosspost: []http://www.uni-protokolle.de/foren/viewt/3200,0.html?sid=0478053c297457017d5f481d78c1e662

Viele Grüße
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]