matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesSchnittpunkte Parabel & Kreis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Sonstiges" - Schnittpunkte Parabel & Kreis
Schnittpunkte Parabel & Kreis < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittpunkte Parabel & Kreis: Lösungsweg?
Status: (Frage) beantwortet Status 
Datum: 15:46 Mi 28.12.2005
Autor: Mathenoobs

Aufgabe
Stellen sie die Gleichung des Kreises auf, der seinen Mittelpunkt im Brennpunkt der Parabel [mm] y^2=2px [/mm] hat und dessen Leitlinie berührt.
Gesucht sind auch die Schnittpunkte von Parabel und Kreis.

Hallo!
Wir sind nach unserem Wissen darauf gekommen das der Brennpunkt F der Parabel der MIttelpunkt des Kreises ist.
also ist der Abstand zwischen dem Brennpunkt und der Leitlinie. also p=r
[mm] y^2+x^2=r^2 [/mm] ist unsere Kreisgleichung für den Mittelpunkt. Also ist p=r sodass der Kreis die Leitlinie berührt.
Wir kommen nun nicht auf die Schnittpunkte der Parabel mit dem Kreis.
Inder Kreisgleichung können wir r durch p ersetzen.

Wir wissen auch das wir, um einen Schnittpunkt zu berechnen die Kreisgleichung mit der Parabel gleich setzen müssen, kommen dann aber nie zu einem für uns sinnvoll erscheinendes Ergebnis. :(

Für eure Hilfe bedanken wir uns schon im Vorraus!!!!!!!!

Michael und Holger

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Schnittpunkte Parabel & Kreis: falscher Mittelpunkt
Status: (Antwort) fertig Status 
Datum: 15:58 Mi 28.12.2005
Autor: Loddar

Hallo Mathenoobs,

[willkommenmr] !!


Bei Eurer ermittelten Kreisgleichung liegt der Mittelpunkt des Kreises nicht im Brennpunkt der Parabel sondern im Koordinatenursprung.

Schließlich lautet die allgemeine Kreisgleichung: [mm] $\left(x-x_M\right)^2 [/mm] + [mm] \left(y-y_M\right)^2 [/mm] \ = \ [mm] r^2$ [/mm]


Übertragen auf Eure Aufgabe lautet das:

[mm] $\left(x-\bruch{p}{2}\right)^2 [/mm] + [mm] \left(y-0\right)^2 [/mm] \ = \ [mm] p^2$ [/mm]

[mm] $\left(x-\bruch{p}{2}\right)^2 [/mm] + [mm] y^2 [/mm] \ = \ [mm] p^2$ [/mm]


Kommt Ihr nun weiter? Die Schnittpunkte erhaltet Ihr durch einsetzen von [mm] $y^2 [/mm] \ = \ 2p*x$ in diese Kreisgleichung.


Gruß
Loddar


Bezug
                
Bezug
Schnittpunkte Parabel & Kreis: Mathe kann auch einfach sein..
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:30 Mi 28.12.2005
Autor: Mathenoobs

Hallo!
Als wir das eben gelesen hatten schlugen wir uns ziemlich fest an den Kopf...
Man kann auch blind für das offensichtliche sein. :-)
Vielen Dank und Gruß!

Michael und Holger

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]