matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenSemilineare Wellengleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Partielle Differentialgleichungen" - Semilineare Wellengleichung
Semilineare Wellengleichung < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Semilineare Wellengleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:44 Mi 29.12.2010
Autor: KannNichts

Hallo!

Ich muss eine Arbeit über Semilineare Wellengleichungen als Teil eines Seminars über Stochastische Partielle Differentialgleichungen.
Das Problem ist, dass ich noch nie eine Vorlesung über Partielle Differentialgleichungen oder Funktionalanalysis gehört habe.
Ich möchte mich aber in das Thema selbständig einarbeiten.

Nun habe ich folgendes vor mir:

Seien $f(s,x,t)$ und [mm] $\sigma(s,x,t)$ [/mm] Zufallsfelder die von den Paramentern [mm] $s\in\mathbf{R}$ [/mm] und [mm] $x\in [/mm] D$ abhängen. Wir betrachten
das Anfangs-Randwertproblem für eine stochastische Wellengleichung wie folgt

[mm] $\frac{\partial^{2}u}{\partial t^{2}}=(\kappa\Delta-\alpha)u+f(u,x,t)+\dot{M}(u,x,t)$ [/mm]
[mm] $x\in [/mm] D$, [mm] $t\in(0,T]$ [/mm]

[mm] $Bu$|$_{\partial D}=0$ [/mm]

$u(x,0)=g(x),$ [mm] $\frac{\partial u}{\partial t}(x,0)=h(x)$ [/mm]

wo

[mm] $\dot{M}(s,x,t)=\sigma(s,x,t)\dot{W}(x,t)$ [/mm]

Mein Problem ist, dass ich die Bestandsteile dieser PDE nicht nachvollziehen kann.
Welche Rollen spielen [mm] $(\kappa\Delta-\alpha)u$, [/mm] $f(u,x,t)$, [mm] $\dot{M}(u,x,t)$ [/mm] ? Inwiefern wird damit eine Wellengleichung charakterisiert?

Ich bin sehr dankbar für Literaturvorschläge, Links oder ähnliches Material, welches mir hilft mit dem Thema besser zurecht zu kommen.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt. Habe es aber vor und werde es hier dann aktualisieren.

Gruß
KN

        
Bezug
Semilineare Wellengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:48 Mi 29.12.2010
Autor: MatthiasKr

Hallo KN,

naja, ich kann Dir auch keine umfangreiche Einführung in solche PDGs geben, dafür ist ja schliesslich auch das Seminar gedacht!

Ganz grob kann man die verschiedenen Terme der Gleichung so charakterisieren: der erste Summand [mm] $(\kappa\Delta-\alpha)u$ [/mm] ist der lineare Teil und auch der Teil mit den Ableitungen höchster Ordnung (räumlich) in Form des Laplace-Operators.  Der Laplace Operator in Verbindung mit dem Zeitableitungsterm macht die Gleichung zu einer Wellengleichung.

Semilinear, also insbesondere auch nichtlinear, wird die Gleichung nun durch die Terme $f$ und $M$, wo $u$ als Argument für nichtlineare Funktionen auftritt. Der Unterschied von semilinearen zu quasilinearen und voll nichtlinearen Gleichungen besteht hier darin, dass nur die Funktion $u$ selbst (und keine Ableitungen von $u$) in solch einem nichtlinearen Term vorkommt.

Was ist denn mit der Seminar-Literatur? Hilft die Dir nicht bei der Einarbeitung ins Thema?

Gruss,
Matthias

> Hallo!
>  
> Ich muss eine Arbeit über Semilineare Wellengleichungen
> als Teil eines Seminars über Stochastische Partielle
> Differentialgleichungen.
>  Das Problem ist, dass ich noch nie eine Vorlesung über
> Partielle Differentialgleichungen oder Funktionalanalysis
> gehört habe.
> Ich möchte mich aber in das Thema selbständig
> einarbeiten.
>  
> Nun habe ich folgendes vor mir:
>  
> Seien [mm]f(s,x,t)[/mm] und [mm]\sigma(s,x,t)[/mm] Zufallsfelder die von den
> Paramentern [mm]s\in\mathbf{R}[/mm] und [mm]x\in D[/mm] abhängen. Wir
> betrachten
>  das Anfangs-Randwertproblem für eine stochastische
> Wellengleichung wie folgt
>  
> [mm]\frac{\partial^{2}u}{\partial t^{2}}=(\kappa\Delta-\alpha)u+f(u,x,t)+\dot{M}(u,x,t)[/mm]
>  
> [mm]x\in D[/mm], [mm]t\in(0,T][/mm]
>  
> [mm]Bu[/mm]|[mm]_{\partial D}=0[/mm]
>  
> [mm]u(x,0)=g(x),[/mm] [mm]\frac{\partial u}{\partial t}(x,0)=h(x)[/mm]
>  
> wo
>  
> [mm]\dot{M}(s,x,t)=\sigma(s,x,t)\dot{W}(x,t)[/mm]
>  
> Mein Problem ist, dass ich die Bestandsteile dieser PDE
> nicht nachvollziehen kann.
>  Welche Rollen spielen [mm](\kappa\Delta-\alpha)u[/mm], [mm]f(u,x,t)[/mm],
> [mm]\dot{M}(u,x,t)[/mm] ? Inwiefern wird damit eine Wellengleichung
> charakterisiert?
>  
> Ich bin sehr dankbar für Literaturvorschläge, Links oder
> ähnliches Material, welches mir hilft mit dem Thema besser
> zurecht zu kommen.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt. Habe es aber vor und werde es hier
> dann aktualisieren.
>  
> Gruß
>  KN


Bezug
                
Bezug
Semilineare Wellengleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:44 Mi 29.12.2010
Autor: KannNichts

Hallo MatthiasKr!

Vielen Dank für die Mühe die Du Dir gemacht hast und für die hilfreichen Erläuterungen.
Die Literatur für dieses Thema ist das Buch "Stochastic Partial Differential Equations" von Pao-Liu Chow. Das Problem ist, dass ich nicht viel mit dem Buch anfagen kann und ich gerne Literatur nutzen würde, die mehr für einen Einsteiger gedacht ist.
Kannst Du mir hier etwas empfehlen?

Gruß
KN

Bezug
                        
Bezug
Semilineare Wellengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:01 Fr 31.12.2010
Autor: MatthiasKr

Hallo KN,

ich könnte Dir zwei Dinge empfehlen: zunächst, falls Du es nicht bereits getan hast, schau Dir doch einführende Bücher zum Thema PDG an. Die meisten behandeln auch die klassische lineare Wellengleichung. Ein gutes Verständnis der linearen Gleichung ist mit sicherheit hilfreich, wenn Du die nichtlinearen Varianten verstehen willst.

Ansonsten habe ich gesehen, dass in 'Partial Differential Equations' von Lawrence C. Evans ein Abschnitt zu diesem Thema ist. Ist glaub ich auch nicht direkt ein Buch für Anfänger, aber vielleicht nicht ganz so spezialisiert wie Dein Seminar-Buch.

Gruss
Matthias

> Hallo MatthiasKr!
>  
> Vielen Dank für die Mühe die Du Dir gemacht hast und für
> die hilfreichen Erläuterungen.
>  Die Literatur für dieses Thema ist das Buch "Stochastic
> Partial Differential Equations" von Pao-Liu Chow. Das
> Problem ist, dass ich nicht viel mit dem Buch anfagen kann
> und ich gerne Literatur nutzen würde, die mehr für einen
> Einsteiger gedacht ist.
> Kannst Du mir hier etwas empfehlen?
>  
> Gruß
>  KN


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]