matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteSkalarprodukt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Eigenwerte" - Skalarprodukt
Skalarprodukt < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Skalarprodukt: Frage
Status: (Frage) beantwortet Status 
Datum: 17:47 Mi 08.06.2005
Autor: c.t.

Hallo,
ich habe Schwirigkeiten mit folgender Aufgabe:

Sei V ein endlich dimensionaler [mm] \IR [/mm] - Vektorraum. Sei H [mm] \subseteq [/mm] V ein UVR mit dim H= dim V-1 und f: [mm] V\to [/mm] V ein Endomorphismus für den folgendes gilt: [mm] f|H=id_{v}, [/mm] f [mm] \circ f=id_{v}, [/mm] f [mm] \not= id_{v}. [/mm]

a) Sei < , > ein Skalarprodukt auf V, sodass f orthogonal bezüglich < , > ist. Zeige, dass f eine Spiegelung ist, also, dass f(a)=-a [mm] f|{}^\perp=id_{v}, [/mm] wobei [mm] {>a>}^\perp [/mm] der Senkrechtraum zu dem von {a} aufgespannten UVR ist.

b) Zeige, dass stets ein Skalarprodukt auf V existiert bezl. welchem f eine Siegelung ist.

a) habe ich komplett gezeigt. Bei b) muss man doch zeigen, dass f bezüglich irgendeines Skalarproduktes orthogonal ist, denn dann kann man ja ganz normal a) anwenden und erhält die Spiegelung. [mm] \forall [/mm] a [mm] \in [/mm] H ist alles klar. Nur für die a [mm] \in {a}\perp [/mm] kann ich das nicht zeigen.

Kann mir hier also jemand weiterhelfen?

Ich habe diese Frage in keinen anderen Internetforum gestellt

        
Bezug
Skalarprodukt: Eigenwert -1
Status: (Antwort) fertig Status 
Datum: 19:56 Fr 10.06.2005
Autor: Gnometech

Grüße!

Also, Du bist fertig, wenn Du einen Eigenvektor zum Eigenwert -1 finden kannst. Wenn nämlich $a [mm] \in [/mm] V$, $a [mm] \not= [/mm] 0$ mit $f(a) = -a$ existiert, dann ist auf jeden Fall $a [mm] \notin [/mm] H$, also ist [mm] $(h_1, \ldots, h_{n-1}, [/mm] a)$ eine Basis von $V$ für jede Basis [mm] $(h_1, \ldots, h_{n-1})$ [/mm] von $H$.

Dann kannst Dir Dein Skalarprodukt einfach definieren, indem Du diese Basis zu einer ONB machst - der Rest folgt von allein.

Wie aber findet man diesen Eigenvektor? Naja, da $f$ idempotent ist, kann $f$ nur die Eigenwerte 1 und -1 haben. Da [mm] $f|_H [/mm] = [mm] \id_H$ [/mm] gilt, folgt schon, dass $(T - [mm] 1)^{n-1}$ [/mm] das char. Polynom [mm] $\chi_f(T)$ [/mm] teilt. Also gibt es nur zwei Möglichkeiten, wie dieses Polynom aussieht:

1) [mm] $\chi_f(T) [/mm] = (T - [mm] 1)^{n-1} \cdot [/mm] (T + 1)$ In dem Fall bist nach obigen Überlegungen fertig.

2) [mm] $\chi_f(T) [/mm] = (T - [mm] 1)^n$. [/mm] Diesen Fall mußt Du zum Widerspruch führen. Aber Du weißt schon, dass $f$ in diesem Fall nicht diagonalisierbar sein kann, da dann $f = [mm] \id_V$ [/mm] gelten würde. Kannst Du zeigen, dass in diesem Fall die Voraussetzung $f [mm] \circ [/mm] f = [mm] \id_V$ [/mm] verletzt ist? :-)

Viel Erfolg!

Lars

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]