matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesSpektrum
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Sonstiges" - Spektrum
Spektrum < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Spektrum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:09 So 06.04.2014
Autor: mimo1

Aufgabe
" Spektrum eines Operators T ist die Menge aller Elemente [mm] \lambda \in \IC, [/mm] für die die Differenz des Operators mit  [mm] \lambda-fachen [/mm] der identische Abb. [mm] (T-\lambda) [/mm] NICHT BESCHRÄNKT INVERTIERBAR ist" ( Auszug aus Wiki "Spektrum")

Hallo,

ich habe eine kleines Problem zum Verständnis  und ich hoffe Ihr könnt sie beseitigen.

Was ist genau mit "nicht beschränkt invertierbar" gemeint bzw. bezieht sich das "NICHT" auf die Beschränkheit oder/und Invertierbarkeit ?

Invertierbarkeit ist klar : [mm] (T-\lambda) [/mm] ist invertierbar falls gilt [mm] det(T-\lambda)\not=0 [/mm] ist

Und was meint man mit " beschränkte Resolvente"?
resolvente ist folgend definiert: [mm] R(T,\lambda):=(T-\lambda)^{-1}, [/mm] d.h ist Inverse zum [mm] (T-\lambda) [/mm]

Könnt Ihr es mir evtl. an einen Beispiel erklären.

Ihr bin für jede Hilfe dankbar

Gruß,
mimo1



        
Bezug
Spektrum: Antwort
Status: (Antwort) fertig Status 
Datum: 13:39 So 06.04.2014
Autor: MaslanyFanclub

Hallo,

> " Spektrum eines Operators T ist die Menge aller Elemente
> [mm]\lambda \in \IC,[/mm] für die die Differenz des Operators mit  
> [mm]\lambda-fachen[/mm] der identische Abb. [mm](T-\lambda)[/mm] NICHT
> BESCHRÄNKT INVERTIERBAR ist" ( Auszug aus Wiki
> "Spektrum")
>  Hallo,
>  
> ich habe eine kleines Problem zum Verständnis  und ich
> hoffe Ihr könnt sie beseitigen.
>  
> Was ist genau mit "nicht beschränkt invertierbar" gemeint
> bzw. bezieht sich das "NICHT" auf die Beschränkheit
> oder/und Invertierbarkeit ?

Nicht beschrämkt-invertierbar, wie nicht stetig differenzierbar. Also nicht gleichzeitig beschränkt und invertierbar.

> Invertierbarkeit ist klar : [mm](T-\lambda)[/mm] ist invertierbar
> falls gilt [mm]det(T-\lambda)\not=0[/mm] ist

Wie willst du für einen beliebigen (u.U. nicht-linearen) Operator eine Determinante definieren? Und noch schlimmer: Selbst für T linear, wie willst du auf einem unendlich dimensionalen Vektorraum eine Determinante definieren?

> Und was meint man mit " beschränkte Resolvente"?
>  resolvente ist folgend definiert:
> [mm]R(T,\lambda):=(T-\lambda)^{-1},[/mm] d.h ist Inverse zum
> [mm](T-\lambda)[/mm]

Existiert für [mm] $\lambda \in \mathbb [/mm] C$ die Abb. [mm] $(T-\lambda id)^{-1}$ [/mm] und ist beschränkt, so nennt man diese Abb. eine beschränkte Resolvente von T. Bsp. wären z.B. für lineare Abb.f  über einem endlich dim. VR  [mm] $f-\lambda [/mm] id$, falls [mm] $\lambda$ [/mm] kein Eigenwert.

> Könnt Ihr es mir evtl. an einen Beispiel erklären.
>  
> Ihr bin für jede Hilfe dankbar
>  
> Gruß,
>  mimo1
>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]