matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenSpiegelung und Basis
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Spiegelung und Basis
Spiegelung und Basis < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Spiegelung und Basis: Korrektur/Hilfe
Status: (Frage) beantwortet Status 
Datum: 20:47 Do 17.02.2011
Autor: sardelka

Aufgabe
Es sei G [mm] \in \IR^{3x3} [/mm] eine orthogonale Matrix.

(Zur Info: G [mm] \vec{x} [/mm] = [mm] (1,1,1)^{T} [/mm] und G [mm] \vec{y} [/mm] = [mm] (1,-1,0)^{T}, [/mm] nicht sicher, ob es gebraucht wird)

Nun beschreibe G eine Spiegelung an der Ebene E durch 0 mit dem Normalenvektor [mm] \vec{u} [/mm] = [mm] (1,0,0)^{T}. [/mm] Bestimmen Sie eine Basis des [mm] \IR^{3x3}, [/mm] die aus Eigenvektoren von G besteht.

Hi!

Also für den ersten Teil, also der Spiegelung setze ich da S = I - [mm] \vec{u} [/mm]  * [mm] \vec{u} [/mm] ^{T} ein und dan ist dann die G Matrix, die gesucht wird?

Und beim zweiten Teil mit den Basen, sind es doch die Vektoren x und y, oder nicht? Denn sie stehen senkrecht aufeinander, bilden also Orthogonalbasis und gleichzeitig Basis von G, oder nicht?


Vielen Dank!

MfG

        
Bezug
Spiegelung und Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 00:28 Fr 18.02.2011
Autor: Lippel

Hallo, die von dir gepostete Aufgabenstellung macht so keinen Sinn.

> Es sei G [mm]\in \IR^{3x3}[/mm] eine orthogonale Matrix.
>  
> (Zur Info: G [mm]\vec{x}[/mm] = [mm](1,1,1)^{T}[/mm] und G [mm]\vec{y}[/mm] =
> [mm](1,-1,0)^{T},[/mm] nicht sicher, ob es gebraucht wird)

Was waren x und y, bevor sie mit G multipliziert wurden? So bringt die Angabe nichts.

>  
> Nun beschreibe G eine Spiegelung an der Ebene E durch 0 mit
> dem Normalenvektor [mm]\vec{u}[/mm] = [mm](1,0,0)^{T}.[/mm] Bestimmen Sie
> eine Basis des [mm]\IR^{3x3},[/mm] die aus Eigenvektoren von G
> besteht.

Eigenvektoren von [mm] $G\:$ [/mm] sind aus [mm] $\IR^3$, [/mm] nicht [mm] $\IR^{3\times{3}}, [/mm] sie können also keine Basis des [mm] $\IR^{3\times{3}}$ [/mm] bilden.

>  Hi!
>  
> Also für den ersten Teil, also der Spiegelung setze ich da
> S = I - [mm]\vec{u}[/mm]  * [mm]\vec{u}[/mm] ^{T} ein und dan ist dann die G
> Matrix, die gesucht wird?

Was meinst du mit u?

>  
> Und beim zweiten Teil mit den Basen, sind es doch die
> Vektoren x und y, oder nicht? Denn sie stehen senkrecht
> aufeinander, bilden also Orthogonalbasis und gleichzeitig
> Basis von G, oder nicht?

Du hast gar nicht geschrieben, was x und y überhaupt sind. G ist eine Matrix, hat also keine Basis. Basen haben Vektorräume. Um eine Basis des [mm] $\IR^3$ [/mm] zu bestimmen brauchst du darüber hinaus drei Basisvektoren, da der Vektorraum ja die Dimension 3 hat.

G spiegelt doch an der [mm] $x_2-x_3$-Ebene. [/mm] Also bleiben alle Vektoren in dieser Ebene unter der durch G vermittelten Abbildung invariant, sind also Eigenvektoren von G zum Eigenwert 1. Die [mm] $x_2-x_3$-Ebene [/mm] ist ein zweidimesionaler Unterraum, daher bekommst du, wenn du eine Basis zu diesem Unterraum bestimmst, schon einmal zwei der gesuchten Eigenvektoren. Was ist eine Basis dieses Unterraums?
Bei der Spiegelung wird außerdem [mm] $e_1:=\pmat{1 \\ 0 \\ 0}$ [/mm] auf [mm] $-e_1$ [/mm] abgebildet. Das heißt [mm] $e_1$ [/mm] ist ein Eigenvektor von G zum Eigenwert -1. Er liegt nicht in der [mm] $x_2-x_3$-Ebene. [/mm] Damit ist er der dritte noch fehlende Basisvektor.

LG Lippel


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]