matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenStabilität DGL Polarkoordinatn
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gewöhnliche Differentialgleichungen" - Stabilität DGL Polarkoordinatn
Stabilität DGL Polarkoordinatn < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stabilität DGL Polarkoordinatn: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 07:58 Di 27.03.2012
Autor: Harris

Hallo!

Ich habe eine autonome DGL, welche nach Transformation in Polarkoordinaten [mm] $x(t)=r(t)\cos(\phi(t)), y(t)=r(t)\sin(\phi(t))$ [/mm] wie folgt aussieht:

[mm] r'(t)=pr(t)\cos(\phi(t))-r(t)^3 [/mm]
[mm] \phi'(t)=1-p\sin(\phi(t)) [/mm]

Nun stellt man mir die Frage, für welche [mm] $p\in\IR$ [/mm] der Gleichgewichtspunkt $0$ asyptotisch stabil ist.
Für $p=0$ und $|p|>1$ ist die Frage einfach, für $p=1$ habe ich einen Ansatz aber für [mm] $|p|\in(0,1)$ [/mm] fehlt mir jedoch jegliche Idee, obwohl ein Mathematica-Plot asymptotische Stabilität verspricht. Der Ansatz über die Linearisierung klappt im übrigen leider nur im Falle $|p|>1$.

Mein Problem ist: Für [mm] $|p|\in(0,1)$ [/mm] ist [mm] $\phi'(t)>0$, [/mm] der Winkel der Lösungen wächst somit streng monoton also kreist jede Lösung für immer um den Ursprung.

Da es Werte für [mm] $\phi(t)$ [/mm] gibt, so dass die Veränderung des Abstandes $r'(t)$ mal positiv und mal negativ ist, ist ein streng monotones Abfallen des Abstandes leider ausgeschlossen.

Hat hier irgendjemand eine Idee oder einen Link, der mich irgendwie weiterbringt?

Wäre so super, nage schon sehr sehr lange immer mal wieder auf dieser Aufgabe rum...

        
Bezug
Stabilität DGL Polarkoordinatn: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:20 Do 29.03.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]