matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungStammfunktion finden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Stammfunktion finden
Stammfunktion finden < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion finden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:27 So 11.01.2009
Autor: moody

Aufgabe
[mm] $2t*e^{-0.02t^2}$ [/mm]

Hallo,

zu der Funktion brauche ich die Stammfunktion.

Mein Ansatz ist folgender:

[mm] \integral_{}^{}{2t*e^{-0.02t^2} dx} [/mm]

Ich müsste jetzt [mm] 0.02t^2 [/mm] substituieren, also:

u(t) = [mm] -0.02t^2 \Rightarrow [/mm] u'(t) [mm] \bruch{du(t)}{dt} [/mm] = $-0.04t$ [mm] \Rightarrow \bruch{1}{-0.04t}du [/mm] = dt

[mm] \Rightarrow \integral_{}^{}{2t*e^{u} dx} [/mm]

[mm] \integral_{}^{}{2t*e^{u} * \bruch{1}{-0.04t} du} [/mm]

[mm] \integral_{}^{}{e^{u} * \bruch{2t}{-0.04t} du} [/mm]

[mm] \integral_{}^{}{e^{u} * \bruch{1}{-0.02} du} [/mm]

[mm] \bruch{1}{-0.02} \integral_{}^{}{e^{u}du} [/mm]

[mm] \Rightarrow \bruch{1}{-0.02} e^{u} [/mm] = F(t)

Stimmt das so?


        
Bezug
Stammfunktion finden: resubstituieren
Status: (Antwort) fertig Status 
Datum: 13:30 So 11.01.2009
Autor: Loddar

Hallo moody!


Zum einen kannst Du doch [mm] $\bruch{1}{-0.02}$ [/mm] umformen zu $-50$ .

Zum anderen musst Du noch $u_$ resubstituieren, damit auch Deine Stammfunktion $F(t)_$ wieder nur die Variable $t_$ enthält.

Und: bei einem unbestimmten Integral die Integrationskonstante $+C_$ nicht vergessen.


Gruß
Loddar


Bezug
                
Bezug
Stammfunktion finden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:35 So 11.01.2009
Autor: moody

Hallo,

danke für die schnelle Antwort.

Ja das Rücksubstituieren habe ich vergessen, wollt's noch ändern, aber du hast schon geantwortet.

lg moody

Bezug
                
Bezug
Stammfunktion finden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:43 So 11.01.2009
Autor: moody

Ich habe noch eine Frage zu dem ganzen Prozedere.

Ich war in der Stunde wo das erklärt wurde leider nicht da [help]

Und und zwar ist mit dieser Vorgang unklar:

u(t) = [mm] -0.02t^2 \Rightarrow [/mm] u'(t) = [mm] \bruch{du(t)}{dt} [/mm] = $-0.04t$ [mm] \Rightarrow \bruch{1}{-0.04t}du [/mm] = dt

Warum u'(t) = [mm] \bruch{du(t)}{dt} [/mm] ist kann ich noch nachvollziehen.

Die letzten Umformungen sind mir aber unklar, wenn man von

[mm] \bruch{du(t)}{dt} [/mm] = $-0.04t$

nach [mm] \bruch{1}{-0.04t}du [/mm] = dt

kommt.

Wieso man du(t) behandelt als stünde dort 1 und wieso man dann einfach du auf die eine Seiten schreiben muss.

lg moody

Bezug
                        
Bezug
Stammfunktion finden: Antwort
Status: (Antwort) fertig Status 
Datum: 14:04 So 11.01.2009
Autor: kuemmelsche

Hallo moody,

angenommen ich möchte folgende Gleichung nach y umstellen, was kommt dann raus?

[mm] \bruch{x}{y}=z [/mm]

Da kommt doch dann raus [mm] y=\bruch{x}{z}, [/mm] oder nicht? Brüche kann ich ja problemlos als Faktoren schreiben, so auch hier: [mm] \bruch{x}{z}=\bruch{1}{z}*x. [/mm]

Jetzt setz mal [mm] \\x=d\ \\u(t), \\y=dt\ [/mm] und [mm] \\z=(-0,004)t. [/mm]

lg Kai

Bezug
                                
Bezug
Stammfunktion finden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:08 So 11.01.2009
Autor: moody

Danke Kai!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]