matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenstochastische AnalysisStandardnormalverteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "stochastische Analysis" - Standardnormalverteilung
Standardnormalverteilung < stoch. Analysis < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Standardnormalverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:18 Do 20.01.2011
Autor: eddiebingel

Aufgabe
Es sei [mm] \phi [/mm] (y) = [mm] \integral_{-\infty}^{y}{\bruch{1}{\wurzel{2\pi}} exp(-x^2 /2 ) dx} [/mm] die Verteilungsfunktion der Standardnormalverteilung
Zeigen sie, dass für y > 0 gilt:
(1 - [mm] \phi [/mm] (y)) [mm] \le \bruch{1}{\wurzel{2\pi}*y} [/mm] exp [mm] (-y^2/2) [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
Ok mein Ansatz sieht wie folgt aus :
(1 - [mm] \phi [/mm] (y)) = [mm] \integral_{y}^{\infty} {\bruch{1}{\wurzel{2\pi}} exp(-x^2 /2 ) dx} [/mm] = [mm] {\bruch{1}{\wurzel{2\pi}} \integral_{y}^{\infty} exp(-x^2 /2 ) dx} [/mm]
Jetzt hab ich die Stammfunktion gebildet die wie folgt aussieht
F(x) := [mm] [\bruch{-1}{x} exp(-x^2 [/mm] /2 )]
[mm] \Rightarrow {\bruch{1}{\wurzel{2\pi}} \integral_{y}^{\infty} exp(-x^2 /2 ) dx} [/mm] = [mm] \bruch{1}{\wurzel{2\pi}} [/mm] ( [mm] F(\infty) [/mm] - F(y))
[mm] =\bruch{1}{\wurzel{2\pi}} [/mm]  (0 + [mm] \bruch{1}{y} [/mm] exp [mm] (-y^2/2)) [/mm]
Jetzt würde ja eig Gleichheit vorliegen kann man wegen der Stammfunktion sagen, dass [mm] F(\infty) [/mm] immernoch minimal negativ  ist,dann wäre die ungleichung ja erfüllt, oder wie soll ich jetzt weitermachen?

Ich hoffe Ihr könnt mir helfen

        
Bezug
Standardnormalverteilung: Korrektur + Tipp
Status: (Antwort) fertig Status 
Datum: 17:52 Do 20.01.2011
Autor: dormant

Hi!

Die Ungleichung finde ich recht interessant. Mir ist leider auf die Schnelle kein Lösungsweg eingefallen, aber ich kann was korriegeren und einen Denkanstoß geben.

> Es sei [mm]\phi[/mm] (y) =
> [mm]\integral_{-\infty}^{y}{\bruch{1}{\wurzel{2\pi}} exp(-x^2 /2 ) dx}[/mm]
> die Verteilungsfunktion der Standardnormalverteilung
> Zeigen sie, dass für y > 0 gilt:
>  (1 - [mm]\phi[/mm] (y)) [mm]\le \bruch{1}{\wurzel{2\pi}*y}[/mm] exp
> [mm](-y^2/2)[/mm]
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt
>  Ok mein Ansatz sieht wie folgt aus :
>  (1 - [mm]\phi[/mm] (y)) = [mm]\integral_{y}^{\infty} {\bruch{1}{\wurzel{2\pi}} exp(-x^2 /2 ) dx}[/mm]
> = [mm]{\bruch{1}{\wurzel{2\pi}} \integral_{y}^{\infty} exp(-x^2/2 ) dx}[/mm]

Soweit so gut.

> Jetzt hab ich die Stammfunktion gebildet die wie folgt
> aussieht
>  F(x) := [mm][\bruch{-1}{x} exp(-x^2[/mm] /2 )]
>  [mm]\Rightarrow {\bruch{1}{\wurzel{2\pi}} \integral_{y}^{\infty} exp(-x^2 /2 ) dx}[/mm]
> = [mm]\bruch{1}{\wurzel{2\pi}}[/mm] ( [mm]F(\infty)[/mm] - F(y))
> [mm]=\bruch{1}{\wurzel{2\pi}}[/mm]  (0 + [mm]\bruch{1}{y}[/mm] exp [mm](-y^2/2))[/mm]

Das stimmt nicht. Die Dichte der Normalverteilung hat keine geschlossene Stammfunktion.

>  Jetzt würde ja eig Gleichheit vorliegen kann man wegen
> der Stammfunktion sagen, dass [mm]F(\infty)[/mm] immernoch minimal
> negativ  ist,dann wäre die ungleichung ja erfüllt, oder
> wie soll ich jetzt weitermachen?

So kommst du nicht weiter. Stattdessen würde ich auf beiden Seiten durch [mm] \exp(-y^2 [/mm] /2) teilen, so dass der Integrand links zu [mm] \exp((y^2-x^2)/2) [/mm] wird. Hier würde ich eine Substitution versuchen und schauen, dass ich das Integral geeignet abschätze.
  

> Ich hoffe Ihr könnt mir helfen

Grüße,
dormant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]