matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikStationäre Verteilung...
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Stochastik" - Stationäre Verteilung...
Stationäre Verteilung... < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stationäre Verteilung...: Rückfrage...
Status: (Frage) beantwortet Status 
Datum: 19:34 Di 16.02.2010
Autor: Morpheus87

Aufgabe
Folgende Aufgabenstellung:
Von gesunden Beschäftigten werden jeden Tag 2% krank, von den Kranken jeden Tag 20% gesund. Wo pendelt sich der Krankenstand ein?

Es ist ja hier nach der stationären Verteilung gefragt.  Wir haben hier den Ansatz 0,02*g = 0,2*(1-g) genommen und sind für g auf einen Wert von 10/11 gekommen (g = Gesund). Der Krankenstand pendelt sich also bei 1/11 ein. Mit meinem Taschenrechner habe ich das überprüft und das Ergebnis stimmt. Ich verstehe diesen Ansatz aber überhaupt nicht. Könnt Ihr mir helfen?




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Stationäre Verteilung...: Antwort
Status: (Antwort) fertig Status 
Datum: 00:01 Mi 17.02.2010
Autor: Mr.Teutone

Ich würde diese Aufgabenstellung als Markovkette [mm] $X=(X_n)_{n\in\IN}$ [/mm] mit Zustandsraum [mm] $T=\{g,k\}$ [/mm] und Übergangsmatrix [mm] $P=(p_{ij})_{i,j\in T}$ [/mm] modellieren, wobei $g$ für "gesund" und $k$ für "krank" steht. Dann gilt für alle [mm] $n\ge [/mm] 2$:

[mm] $p_{gg}=P(X_n=g|X_{n-1}=g)=0.98$ [/mm]

[mm] $p_{gk}=P(X_n=k|X_{n-1}=g)=0.02$ [/mm]

[mm] $p_{kg}=P(X_n=g|X_{n-1}=k)=0.2$ [/mm]

[mm] $p_{kk}=P(X_n=k|X_{n-1}=k)=0.8$ [/mm]

also [mm] $\displaystyle P=\pmat{ p_{gg} & p_{gk} \\ p_{kg} & p_{kk}}=\pmat{ 0.98 & 0.02 \\ 0.2 & 0.8}$. [/mm]

Nun ist die stationäre Verteilung [mm] $\pi=(\pi_g,\pi_k)$ [/mm] von $X$ gesucht. Diese ist gegeben durch die Linkseigenvektoren der Matrix $P$ und die zusätzliche Bedingung [mm] $\pi_g+\pi_k=1$. [/mm] Die Linkseigenvektoren findest du durch Lösen des linearen Gleichungssytems [mm] $\pi P=\pi$. [/mm]

Du erhältst dann genau die Lösungen [mm] $\pi_g=\frac{10}{11}$ [/mm] und [mm] $\pi_k=\frac{1}{11}$ [/mm] und beim Ausschreiben des obigen Gleichungssystems erhältst du auch genau deinen "Ansatz".

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]