matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSteckbriefaufgabenSteckbriefaufgabe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Steckbriefaufgaben" - Steckbriefaufgabe
Steckbriefaufgabe < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Steckbriefaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:53 Mo 29.12.2003
Autor: nonni

Hallo!
Ich habe da ein Problem bei einer Steckbriefaufgabe!

Und zwar kann ich die Gleichung für diese Bedingung nicht aufstellen:Die Tangente im Ursprung steht senkrecht auf der Geraden mit der Gleichung y=0,5x+2

        
Bezug
Steckbriefaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 19:32 Mo 29.12.2003
Autor: Marc

Hallo Nonni,

zunächst einmal freue ich mich über deine Anmeldung im MatheRaum und heiße dich herzlich willkommen :-)?

Für deine Frage solltest du folgenden Sachverhalt kennen:

Gilt für zwei die Steigungen [mm]m_1[/mm],[mm]m_2[/mm] zweier Geraden [mm]m_1*m_2 = -1 [/mm], dann verlaufen die Geraden senkrecht zueinander.

(Die Umkehrung dieses Satzes gilt übrigens nicht, wegen der konstanten Funktionen (z.B. für y=3), die ja auch Geraden sind: Dort ist jede Senkrechte ja keine Funktion (z.B. x=4), weswegen wir auch nicht von einer Steigung sprechen können. Für konstante Funktionen und Senkrechte zur x-Achse müssen also gesonderte Betrachtungen angestellt werden.)

Obiger Einschub steht in Klammern, da dies für deine konkrete Aufgabe keine Rolle spielt.
Hier steht die Tangente (die ja auch eine Gerade ist) auf der Geraden [mm] y=0,5x+2[/mm] senkrecht, es gilt also für die Steigung [mm]m[/mm] der Tangente:

[mm]m * 0,5 = -1[/mm]

Daraus läßt sich ganz leicht die Steigung der Tangente berechnen.
Nun ist die Ableitung einer Funktion an einer Stelle gerade die Steigung der Tangente (per Definition), so dass auch gilt:

[mm] f'(0) = m [/mm]

(Die Stelle, an der die Tangente gebildet werden soll, ist hier 0, weil es lautet: "Die Tangente im Ursprung")

Übrigens enthält deine Fragestellung eine weitere Bedingung, nämlich die, dass der Graph der gesuchten Funktion durch den Ursprung verläuft, es also gilt:

[mm] f(0) = 0 [/mm]

Ich hoffe, damit kannst du deine Aufgabe lösen, wenn du magst, kannst du uns ja die komplette Aufgabenstellung inklusive deiner Lösung posten, wir kontrollieren sie gerne.

Viel Erfolg,
Marc.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]