matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenStetig differenzierbar.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - Stetig differenzierbar.
Stetig differenzierbar. < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetig differenzierbar.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:49 Do 13.12.2012
Autor: quasimo

Aufgabe
ist die FunktioF: [mm] \IR^3-> \IR^3 [/mm]
F= [mm] \vektor{x \\ z \\y} [/mm]
stetig deifferenzierbar?

F: [mm] \IR^3 [/mm] -> [mm] \IR^3 [/mm] eine partiell differenzierbare Funktion und alle partiellen Ableitungen sind stetig ->F  total differenzierbar

[mm] \frac{\partial F}{\partial x}= \vektor{1 \\ 0 \\0} [/mm]
[mm] \frac{\partial F}{\partial y}= \vektor{0 \\ 0 \\1} [/mm]
[mm] \frac{\partial F}{\partial z}= \vektor{0 \\ 1 \\0} [/mm]



Da alle Vektorkomponenten von F stetig sind ist F  ein stetig differenzierbares Vektorfeld

        
Bezug
Stetig differenzierbar.: Antwort
Status: (Antwort) fertig Status 
Datum: 10:59 Do 13.12.2012
Autor: reverend

Hallo quasimo,

das sieht gut aus.

> ist die FunktioF: [mm]\IR^3-> \IR^3[/mm]
>   F= [mm]\vektor{x \\ z \\ y}[/mm]
>  
> stetig deifferenzierbar?
>  F: [mm]\IR^3[/mm] -> [mm]\IR^3[/mm] eine partiell differenzierbare Funktion

> und alle partiellen Ableitungen sind stetig ->F  total
> differenzierbar
>  
> [mm]\frac{\partial F}{\partial x}= \vektor{1 \\ 0 \\ 0}[/mm]
>  
> [mm]\frac{\partial F}{\partial y}= \vektor{0 \\ 0 \\ 1}[/mm]
>  
> [mm]\frac{\partial F}{\partial z}= \vektor{0 \\ 1 \\ 0}[/mm]
>  
> Da alle Vektorkomponenten von F stetig sind ist F  ein
> stetig differenzierbares Vektorfeld

So ist es. Es handelt sich ja auch nur um eine Spiegelung des [mm] \IR^3 [/mm] an der Ebene y=z, also nichts Aufregendes. ;-)

Grüße
reverend


Bezug
                
Bezug
Stetig differenzierbar.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:08 Do 13.12.2012
Autor: fred97


> Hallo quasimo,
>  
> das sieht gut aus.
>  
> > ist die FunktioF: [mm]\IR^3-> \IR^3[/mm]
>  >   F= [mm]\vektor{x \\ z \\ y}[/mm]
>  
> >  

> > stetig deifferenzierbar?
>  >  F: [mm]\IR^3[/mm] -> [mm]\IR^3[/mm] eine partiell differenzierbare

> Funktion
> > und alle partiellen Ableitungen sind stetig ->F  total
> > differenzierbar
>  >  
> > [mm]\frac{\partial F}{\partial x}= \vektor{1 \\ 0 \\ 0}[/mm]
>  >  
> > [mm]\frac{\partial F}{\partial y}= \vektor{0 \\ 0 \\ 1}[/mm]
>  >  
> > [mm]\frac{\partial F}{\partial z}= \vektor{0 \\ 1 \\ 0}[/mm]
>  >  
> > Da alle Vektorkomponenten von F stetig sind ist F  ein
> > stetig differenzierbares Vektorfeld
>
> So ist es.


Hallo reverend,

schau mal hier:

https://matheraum.de/read?i=935753

Gruß FRED


> Es handelt sich ja auch nur um eine Spiegelung
> des [mm]\IR^3[/mm] an der Ebene y=z, also nichts Aufregendes. ;-)
>  
> Grüße
>  reverend
>  


Bezug
        
Bezug
Stetig differenzierbar.: Antwort
Status: (Antwort) fertig Status 
Datum: 11:06 Do 13.12.2012
Autor: fred97


> ist die FunktioF: [mm]\IR^3-> \IR^3[/mm]
>   F= [mm]\vektor{x \\ z \\y}[/mm]
>  
> stetig deifferenzierbar?
>  F: [mm]\IR^3[/mm] -> [mm]\IR^3[/mm] eine partiell differenzierbare Funktion

> und alle partiellen Ableitungen sind stetig ->F  total
> differenzierbar
>  
> [mm]\frac{\partial F}{\partial x}= \vektor{1 \\ 0 \\0}[/mm]
>  
> [mm]\frac{\partial F}{\partial y}= \vektor{0 \\ 0 \\1}[/mm]
>  
> [mm]\frac{\partial F}{\partial z}= \vektor{0 \\ 1 \\0}[/mm]
>  
>
>
> Da alle Vektorkomponenten von F stetig sind ist F  ein
> stetig differenzierbares Vektorfeld

Da F differenzierbar ist, ist F auch stetig !


Ich vermute, dass Dir nicht klar ist, was "stetig differenzierbar " bedeutet.

F ist stetig differenzierbar, wenn F (total) differenzierbar ist und wenn die Ableitung F' stetig ist.

   F' ist stetig  [mm] \gdw \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y} [/mm] und  [mm] \frac{\partial F}{\partial z} [/mm]  sind stetig.

Bei obigem F ist natürlich klar, dass [mm] \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y} [/mm] und  [mm] \frac{\partial F}{\partial z} [/mm]  stetig sind.

FRED

Bezug
                
Bezug
Stetig differenzierbar.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:26 Do 13.12.2012
Autor: quasimo

Impliziert also totale differenzierbarkeit stetigkeit?

LG

Bezug
                        
Bezug
Stetig differenzierbar.: Antwort
Status: (Antwort) fertig Status 
Datum: 11:47 Do 13.12.2012
Autor: M.Rex


> Impliziert also totale differenzierbarkeit stetigkeit?
>  
> LG

Jede Funktion, die Differenzierbar ist, muss auch stetig sein.
Stetige Differenzierbarket bedeutet, dass auch die Ableitung wieder eine Stetige Funktion ist.

Marius


Bezug
                                
Bezug
Stetig differenzierbar.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:50 Do 13.12.2012
Autor: quasimo

Ah danke ;)

Bezug
                                        
Bezug
Stetig differenzierbar.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:11 Do 13.12.2012
Autor: fred97


> Ah danke ;)

Das habe ich Dir allerdings hier

   https://matheraum.de/read?i=935753

schon erzählt.

FRED


Bezug
                                                
Bezug
Stetig differenzierbar.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:47 Do 13.12.2012
Autor: quasimo

Das danke galt auch unteranderem dir ;D
Ja ich hab im ersten Mom. nicht überlegt^^
LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]