matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitStetige Fortsetzung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Stetigkeit" - Stetige Fortsetzung
Stetige Fortsetzung < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetige Fortsetzung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:41 Di 01.05.2012
Autor: mart1n

Aufgabe
Geben Sie für jede der folgenden Funktionen den maximalen Dedinitionsbereich D [mm] \in \IR [/mm] an und untersuchen Sie ihr Verhakten an den Rändern von D (inklusive - [mm] \infty [/mm] und + [mm] \infty) [/mm]

[mm] h(x)=cos(\wurzel{x})+\wurzel{cos(x)} [/mm]

Hallo,
habe folgende Frage zu obenstehender Aufgabe:

Den Definitionsbereich habe ich bereits bestimmt.
D [mm] \in [/mm] [ [mm] 2\pi [/mm] n, [mm] \pi [/mm] /2 [mm] +2\pi [/mm] n] [mm] \cup [/mm] [3/2 [mm] \pi [/mm] + 2 [mm] \pi [/mm] n , 2 [mm] \pi [/mm] (1+n)] n [mm] \in \IR [/mm] (nur positive und 0)

Außerdem habe ich auch das Verhalten für + [mm] \infty [/mm] bestimmt. Da es sich um eine Cosinusfunktion handelt gibt es keinen Grenzwert.

Ich habe lediglich Probleme mit dem Verhalten an den sonstigen Rändern. meiner meinung nach sind die Funktionen an den Rändern wie z.B. [mm] \pi [/mm] /2 noch betimmt und eine erläuterung ist hinfälltig. Bin mir allerdings nicht ganz sicher.

Vielen dank bereits im Vorraus.

Gruß
mart1n!



        
Bezug
Stetige Fortsetzung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:33 Di 01.05.2012
Autor: Diophant

Hallo,

überprüfe mal deine Notation für den Definitionsbereich nochmal. Er ist zum einen faslch, und dann auch noch etwas umständlich formuliert. Es könnte sein, dass du einfach Probleme hast, eine vernünftige Notation zu finden. Hier als Tipp: der zweite Teil der Vereinigungsmenge kommt der Sache schon näher, hier ist aber insbesondere [mm] n\IR [/mm] natürlich Nonsens.

Bedenke einfach nochmal, dass die Definitionsmenge aus den beiden Forderungen

[mm] x\ge{0}\wedge{cos x}\ge{0} [/mm]

hervorgeht. Wo ist die Kosinusfunktion überall größer gleich 0?

Zu deiner zweiten Frage: wenn man die Forderungen sauber aufschreibt wie oben, dann dürfte es klar sein, dass dies direkt aus der Tatsache folgt, dass die Wurzelfunktion nur für nichtnegative Zahlen definiert ist. Insbesondere sind damit die Teilintervalle des Definitionsbereichs sämtlich abgeschlossen und die Funktion an den Rändern somit definiert.

Was die Untersuchung für [mm] x->-\infty [/mm] hier in der Aufgabenstellung zu suchen hat, weiß ich auch nicht, es macht keinen Sinn. Für [mm] x->\infty [/mm] siehst du das ganz richtig: es gibt keinen Grenzwert, auch keinen uneigentlichen.


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]